Publications

(* denotes corresponding author)

  1. Zhang, H., Zhang, F.*, Zhang, G., Yan, W. (2022). Why do CMIP6 models fail to simulate snow depth in terms of temporal change and high mountain snow of China skillfully? Geophysical Research Letters, 49(15), e2022GL098888
    Download
  2. Zhang, H., Immerzeel, W. W., Zhang, F.*, de Kok, R. J., Chen, D., Yan, W. (2022). Snow cover persistence reverses the altitudinal patterns of warming above and below 5000 m on the Tibetan Plateau. Science of The Total Environment, 803, 149889
    Download
  3. Zhang, H., Zhang, F.*, Che, T., Yan, W., Ye, M. (2021). Investigating the ability of multiple reanalysis datasets to simulate snow depth variability over mainland China from 1981 to 2018. Journal of Climate, 34(24): 9957-9972.
    Download
  4. Hongbo Zhang, W.W. Immerzeel, Fan Zhang*, Remco J. de Kok, Sally J. Gorrie, and Ming Ye. (2021). Creating 1-km long-term (1980–2014) daily average air temperatures over the Tibetan Plateau by integrating eight types of reanalysis and land data assimilation products downscaled with MODIS-estimated temperature lapse rates based on machine learning. International Journal of Applied Earth Observation and Geoinformation, 97: 102295. doi: 10.1016/j.jag.2021.102295
    Download
  5. Hongbo Zhang*, Fan Zhang, Guoqing Zhang, Wei Yan, Sien Li. (2021). Enhanced scaling effects significantly lower the ability of MODIS normalized difference snow index to estimate fractional and binary snow cover on the Tibetan Plateau. Journal of Hydrology, 592: 125795. doi: 10.1016/j.jhydrol.2020.125795
    Download
  6. Hongbo Zhang*, Fan Zhang, Tao Che, Shijin Wang. (2020). Comparative evaluation of VIIRS daily snow cover product with MODIS for snow detection in China based on ground observations. Science of The Total Environment, 724:138156. doi: 10.1016/j.scitotenv.2020.138156
    Download
  7. Hongbo Zhang, Fan Zhang*, Guoqing Zhang, Tao Che, Wei Yan, Ming Ye, Ning Ma. (2019). Ground-based evaluation of MODIS snow cover product V6 across China: implications for the selection of NDSI threshold. Science of the Total Environment, 651, 2712-2726. doi: j.scitotenv.2018.10.128.
    Download
  8. Hongbo Zhang, Fan Zhang*, Guoqing Zhang, Tao Che, Wei Yan. (2018). How accurately can the air temperature lapse rate over the Tibetan Plateau be estimated from MODIS LSTs? Journal of Geophysical Research: Atmospheres, 123(8): 3943-3960, doi:10.1002/2017JD028243.
    Download
  9. Hongbo Zhang, Fan Zhang*, Guoqing Zhang, Yaoming Ma, Kun Yang, Ming Ye. (2018). Daily air temperature estimation on glacier surfaces in the Tibetan Plateau using MODIS LST data. Journal of Glaciology, 64(243): 132-147. doi:10.1017/jog.2018.6
    Download
  10. Hongbo Zhang*, Fan Zhang, Guoqing Zhang, Xiaobo He, Lide Tian. (2016). Evaluation of cloud effects on air temperature estimation using MODIS LST based on ground measurements over the Tibetan Plateau. Atmospheric Chemistry and Physics, 16, 13681-13696, doi:10.5194/acp-16-13681-2016.
    Download
  11. Hongbo Zhang, Fan Zhang* , Ming Ye, Tao Che, Guoqing Zhang. (2016). Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data. Journal of Geophysical Research: Atmospheres, 121(19), 11,425-411,441, doi:10.1002/2016JD025154.
    Download
  12. Hongbo Zhang, Fan Zhang*, Xiaonan Shi, Chen Zeng, Dong-Sin Shih, Gour-Tsyh Yeh, Daniel R. Joswiak. (2014). Influence of river channel geometry in stream flow modelling and guidelines for field investigation. Hydrological Processes, 28(4): 2630-2638.
    Download
  13. Fan Zhang*, Hongbo Zhang, Scott C. Hagen, Ming Ye, Dingbao Wang, Dongwei Gui, Chen Zeng, Lide Tian, Jingshi Liu (2015). Snow cover and runoff modelling in a high mountain catchment with scarce data: effects of temperature and precipitation parameters. Hydrological Processes, 29(1): 52-65.
    Download
  14. Thapa, S., Zhang, F., Zhang, H., Zeng, C., Wang, L., Xu, C. Y., Amrit Thapa, Nepal, S. (2021). Assessing the snow cover dynamics and its relationship with different hydro-climatic characteristics in Upper Ganges river basin and its sub-basins. Science of The Total Environment, 793, 148648.
  15. Zhang, F., Shi, X., Zeng, C., Wang, L., Xiao, X., Wang, G., Chen, Y., Zhang, H., Lu, X., Immerzeel, W. (2020). Recent stepwise sediment flux increase with climate change in the Tuotuo River in the central Tibetan Plateau. Science Bulletin, 65(5), 410-418.
  16. Ma, X., Zhu, J., Zhang, H., Yan, W., Zhao, C. (2020). Trade-offs and synergies in ecosystem service values of inland lake wetlands in Central Asia under land use/cover change: A case study on Ebinur Lake, China. Global Ecology and Conservation, 24, e01253.
  17. Pepin, N., Deng, H., Zhang, H., Zhang, F., Kang, S., Yao, T. (2019). An examination of temperature trends at high elevations across the Tibetan Plateau: The use of MODIS LST to understand patterns of elevation‐dependent warming. Journal of Geophysical Research: Atmospheres, 124(11), 5738-5756.
  18. Zhang, G., Yao, T., Chen, W., Zheng, G., Shum, C. K., Yang, K., … Zhang, H., Jia, Y. (2019). Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sensing of Environment, 221, 386-404.
  19. Zhang, F., Zeng, C., Pant, R. R., Wang, G., Zhang, H., Chen, D. (2019). Meltwater hydrochemistry at four glacial catchments in the headwater of Indus River. Environmental Science and Pollution Research, 26(23), 23645-23660.
  20. Wang, L., Zhang, F., Zhang, H., Scott, C. A., Zeng, C., Shi, X. (2018). Intensive precipitation observation greatly improves hydrological modelling of the poorly gauged high mountain Mabengnong catchment in the Tibetan Plateau. Journal of Hydrology, 556, 500-509.
  21. Kan, B., Su, F., Xu, B., Xie, Y., Li, J., Zhang, H. (2018). Generation of High Mountain Precipitation and Temperature Data for a Quantitative Assessment of Flow Regime in the Upper Yarkant Basin in the Karakoram. Journal of Geophysical Research: Atmospheres.
  22. Qu, B., Sillanpää, M., Kang, S., Yan, F., Li, Z., Zhang, H., Li, C. (2018). Export of dissolved carbonaceous and nitrogenous substances in rivers of the “Water Tower of Asia”. Journal of Environmental Sciences, 65, 53-61.
  23. Shi, X., Zhang, F., Lu, X., Wang, Z., Gong, T., Wang, G., Zhang, H. (2018). Spatiotemporal variations of suspended sediment transport in the upstream and midstream of the Yarlung Tsangpo River (the upper Brahmaputra), China. Earth Surface Processes and Landforms, 43(2), 432-443.
  24. Guo, B., Liu, Y., Zhang, F., Hou, J., Zhang, H., Li, C. (2017). Heavy metals in the surface sediments of lakes on the Tibetan Plateau, China. Environmental Science and Pollution Research, 1-13.
  25. Zhang, G., Yao, T., Shum, C. K., Yi, S., Yang, K., Xie, H., … Zhang, H. (2017). Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophysical Research Letters, 44(11), 5550-5560.
  26. Zhang, G., Yao, T., Piao, S., Bolch, T., Xie, H., Chen, D., Gao, Y., O’Reilly, C.M., Shum, C.K., Yang, K., Yi, S., Lei, Y., Wang, W., He, Y., Shang, K., Yang, X., Zhang, H. (2016). Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophysical Research Letters, 44(1), 252-260.
  27. Yu, W., Tian, L., Risi, C., Yao, T., Ma, Y., Zhao, H., Zhu, H., He, Y., Xu, B., Zhang, H., Qu, D. (2016). δ18O records in water vapor and an ice core from the eastern Pamir Plateau: Implications for paleoclimate reconstructions. Earth and Planetary Science Letters, 456, 146–156.
  28. Yu, J., Zhang, G., Yao, T., Xie, H., Zhang, H., Ke, C., Yao, R. (2015). Developing daily cloud-free snow composite products from MODIS Terra–Aqua and IMS for the Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2171-2180.
  29. Ma, N., Zhang, Y., Guo, Y., Gao, H., Zhang, H., Wang, Y. (2015). Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe. Journal of Hydrology, 529, 980-992.
  30. Zhang, F., Zhang, H., Hagen, S. C., Ye, M., Wang, D., Gui, D., Zeng, C., Liu, J. (2015). Snow cover and runoff modelling in a high mountain catchment with scarce data: effects of temperature and precipitation parameters. Hydrological processes, 29(1), 52-65.
  31. Zhang, F., Yeh, G. T., Parker, J. C., Zhang, H., Shi, X., Wang, C., Gu, R. (2012). A reaction-based river/stream water quality model: reaction network decomposition and model application. Terrestrial Atmospheric and Oceanic Sciences, 23(5), 605.
  32. 罗伦,朱立平,王永杰,杨威,旦增,张宏波。藏东南嘎隆拉冰川表碛冻融过程与零点幕效应。2019。冰川冻土
  33. 罗伦, 朱立平, 王永杰, 杨威, 旦增, 张宏波. (2019). 藏东南嘎隆拉冰川表碛冻融过程与零点幕效应. 冰川冻土41(4), 751-760.
  34. 张凡, 史晓楠, 曾辰, 王冠星, 陈瑶, 王莉, 张宏波, 余钟波. (2019). 青藏高原河流输沙量变化与影响. 中国科学院院刊34(11), 1274-1284.

 

Leave a Reply

Your email address will not be published.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>