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Abstract. Moderate Resolution Imaging Spectroradiometer
(MODIS) daytime and nighttime land surface temperature
(LST) data are often used as proxies for estimating daily
maximum (Tmax) and minimum (Tmin) air temperatures, es-
pecially for remote mountainous areas due to the sparse-
ness of ground measurements. However, the Tibetan Plateau
(TP) has a high daily cloud cover fraction (> 45 %), which
may affect the air temperature (Tair) estimation accuracy.
This study comprehensively analyzes the effects of clouds
on Tair estimation based on MODIS LST using detailed half-
hourly ground measurements and daily meteorological sta-
tion observations collected from the TP. It is shown that er-
roneous rates of MODIS nighttime cloud detection are ob-
viously higher than those achieved in daytime. Large errors
in MODIS nighttime LST data were found to be introduced
by undetected clouds and thus reduce the Tmin estimation
accuracy. However, for Tmax estimation, clouds are mainly
found to reduce the estimation accuracy by affecting the es-
sential relationship between Tmax and daytime LST. The er-
rors of Tmax estimation are obviously larger than those of
Tmin and could be attributed to larger MODIS daytime LST
errors that result from higher degrees of LST heterogeneity
within MODIS pixel compared to those of nighttime LST.
Constraining MODIS observations to non-cloudy observa-
tions can efficiently screen data samples for accurate Tmin
estimation using MODIS nighttime LST. As a result, the
present study reveals the effects of clouds on Tmax and Tmin
estimation through MODIS daytime and nighttime LST, re-
spectively, so as to help improve the Tair estimation accuracy

and alleviate the severe air temperature data sparseness issues
over the TP.

1 Introduction

Air temperature is a key variable used to describe environ-
mental conditions. However, temperature observations are
typically sparse in remote mountainous areas (Lin et al.,
2016). Remotely sensed land surface temperatures (LST) can
serve as an efficient proxy for air temperature estimation in
such areas. Superior to limited ground measurements, remote
sensing can provide more spatiotemporal information. Sev-
eral studies have estimated air temperatures using Moderate
Resolution Imaging Spectroradiometer (MODIS) land sur-
face temperature products for Europe (Benali et al., 2012;
Kilibarda et al., 2014), Canada (Xu et al., 2014), USA (Oyler
et al., 2015; Parmentier et al., 2015; Oyler et al., 2016),
Africa (Vancutsem et al., 2010; Lin et al., 2012), western
Asia (Emamifar et al., 2013) and the Tibetan Plateau (TP)
(Fu et al., 2011; Zhu et al., 2013).

Due to its high altitudes, the TP and surrounding areas
include the largest cryosphere area outside the Arctic and
Antarctic regions and Greenland, and it is considered to be
among the areas that are most sensitive to climate change.
However, most meteorological stations in the TP are located
in low-altitude (< 4800 m) and eastern regions (Fig. 1). There
are almost no stations in the vast western area or at the ele-
vations above 5000 m. In particular, for glacier covered ar-
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2 H. Zhang et al.: Evaluation of cloud effects on air temperature estimation

Figure 1. Map of the TP marking AWS and meteorological station locations. Landsat images observed during the time period for data used
in this study are also shown in natural color modes with acquired dates. The outline of the MODIS grid is also plotted.

eas temperature observations are extremely scarce (Wu et
al., 2015). Remotely sensed LSTs can help greatly allevi-
ate the problems associated with scarce temperature obser-
vations available for the TP.

Despite the advantages of high spatial and temporal acces-
sibility to large-scale areas, remote sensing data present some
limitations, among which cloud contamination issues may be
the most important. For applications of MODIS LST, clouds
can affect the Tair (air temperature) estimation in at least two
ways: erroneous cloud identification can reduce the accuracy
of MODIS LST values, and the presence of clouds can affect
the relationship between LST and Tair and can further affect
the accuracy of Tair estimations.

The presence of clouds can greatly decrease the amount of
data available in the satellite images. Moreover, the existing
cloud detection algorithms cannot identify all the cloudy pix-
els, and a considerable percentage of undetected cloudy pix-
els exists in MODIS LST products (reported at roughly 15 %)
(Ackerman et al., 2008). It has been shown through some
validation studies that extremely large differences (> 10 K)
between MODIS LST and ground measurements occasion-
ally occur, even for homogeneous surfaces. In these cases,
the cloud top temperatures can be taken as the LST values
(Langer et al., 2010; Westermann et al., 2011). More recently,
up to 40 % of ground-measured cloudy samples have been la-
beled unidentified according to field observations, thus pro-
ducing rather large MODIS LST errors, as reported for Sval-
bard (Østby et al., 2014). Such errors can disturb the true re-
lationship between LST and air temperatures (Tair). MODIS
daytime LST has been found to be affected by unidentified

cloudy pixels, causing such pixels to severely degrade LST–
Tair relationships (Williamson et al., 2013). Because the day-
time cloud algorithm is expected to present more confidence
than that for nighttime (Ackerman et al., 1998), using the
nighttime LST for air temperature estimation may be influ-
enced more by undetected clouds. For the TP, cloud contam-
ination also constitutes a major problem, generating a mean
daily cloud cover fraction of > 45 % (Yu et al., 2016). Thus,
the effects of clouds are particularly essential for Tair estima-
tion in the TP.

In addition to the effects of undetected cloudy pixels,
clouds are expected to play a key role in the relationship
between LST and Tair due to its cooling effects during the
day and warming effects at night (Dai et al., 1999). Dur-
ing the day, clouds can decrease land surface warming rates
by blocking solar radiation, and at night clouds can reflect
surface long-wave radiation and decrease heat losses from
the land surface producing higher ground temperatures than
those detected on clear days. For example, the difference be-
tween observed daytime LST and Tair under cloudy condi-
tions is much lower (an average of ∼ 3.7 ◦C) than that ob-
served under clear conditions (Gallo et al., 2011). Therefore,
questions regarding whether and how clouds can affect Tmax–
daytime LST and Tmin–nighttime LST relationships have
been posed. Previous Tair estimations based on MODIS LST
are presumably valid for clear conditions (Shen and Lep-
toukh, 2011; Oyler et al., 2015). However, satellite-observed
LSTs (at night or during the day) are instantaneous and may
have a time lag between the overpass time and the time when
Tair reaches its minimum or maximum. Daily cloudiness con-

Atmos. Chem. Phys., 16, 1–16, 2016 www.atmos-chem-phys.net/16/1/2016/



H. Zhang et al.: Evaluation of cloud effects on air temperature estimation 3

ditions may affect the warming (during the day) or cooling
(at night) rates and can further alter the relationship between
Tair and LST.

Previous studies have mainly focused on two types of daily
Tair estimations: daily maximum (Tmax) and minimum (Tmin)
air temperatures (Benali et al., 2012; Xu et al., 2014; Good,
2015). In addition, daytime and nighttime LST have been
used as predictors for Tmax and Tmin estimations, respec-
tively, due to their different overpass times (Vancutsem et al.,
2010; Lin et al., 2012; Oyler et al., 2016). Recent studies
have interestingly found that the estimation accuracy of Tmax
based on daytime LST is clearly lower than that of Tmin based
on nighttime LST (Zhang et al., 2011; Benali et al., 2012;
Oyler et al., 2016), and nighttime LST has an even higher
correlation with Tmax than daytime LST (Zhang et al., 2011;
Zeng et al., 2015). Benali et al. (2012) hypothesized that the
presence of cloud cover may decrease daytime warming lev-
els, resulting in incorrect modeling and negative effects of
cloud cover on estimation accuracies. Oyler et al. (2016) in-
stead attributed this to the large microscale variability differ-
ences between daytime and nighttime LST.

Due to the scarcity of detailed cloud observations avail-
able, few studies have focused on the potentially important
effects of clouds on estimations of Tair that use remotely
sensed LST. This study explores the effects of clouds on
Tair estimation using MODIS LST based on detailed half-
hourly ground measurements and the daily China Meteoro-
logical Administration (CMA) station observations. For the
TP, sufficiently detailed observations are extremely rare and
related studies have not been conducted before. Three auto-
matic weather stations (AWS) with half-hourly-averaged ob-
servations are examined in this study, including one valuable
site positioned on a glacier. To make our study more rep-
resentative, data drawn from 92 CMA stations that include
daily Tmax and Tmin observations are also used for cloud ef-
fect tests.

2 Data

2.1 Ground measurements

In this study, detailed observations from three AWSs on the
TP were obtained (Fig. 1). The Ngari station is located in
the western area of the TP at an elevation of 4270 m. Desert
grassland constitutes the main form of land cover here. The
Qinghai station is located in the northeastern TP at an eleva-
tion of 3250 m and is dominated by alpine meadow. The Xiao
Dongkemadi station is located in the interior TP at an eleva-
tion of 5621 m on the Xiao Dongkemadi glacier (Fig. 1). The
general features of the three AWSs are listed in Table 1. In
addition, daily Tmax and Tmin observations measured at 2 m
above the ground surface from 92 CMA stations over the TP
are also used for assistant analysis. Data drawn from these
CMA stations are from 2007 to 2010.

All three AWSs provide half-hourly-averaged ingoing and
outgoing long-wave radiation, and air temperature data.
Through controlling the data quality, obvious outliers have
been removed for all three AWSs. These radiation data were
measured using a widely used CNR1 net radiometer at an
uncertainty level of ±10 % for daily totals set by the manu-
facturer. Air temperatures were collected using an HMP45C
sensor with expected accuracies of ±0.2–0.5 ◦C depending
on the temperature ranges involved. Detailed measurement
specifications are listed in Table 1. However, only the Xiao
Dongkemadi station provides the directly measured LST val-
ues, which were obtained through an Apogee Precision In-
frared Thermocouple Sensor (IRTS-P) with an accuracy of
0.3 K over the glacier surface (Huintjes et al., 2015). The
LSTs of the Qinghai and Ngari stations were derived based
on the Stefan–Boltzmann law and the thermal radiative trans-
fer theory:

Lu = σT
4

b = (1− ε)Ld+ εσT
4

s , (1)

where Lu and Ld are the upwelling and downwelling long-
wave radiation, respectively, σ is the Stefan–Boltzmann con-
stant (5.670367× 10−8 W m−2 K−4), ε is land surface emis-
sivity, Tb is the brightness temperature, and Ts is the land sur-
face temperature. The calculated LSTs were taken as ground
measurements of LST as Wang et al. (2008).

In this study, emissivity values were assigned empiri-
cally due to a lack of measurements. Emissivity values for
the Qinghai and Ngari stations were set to 0.987 (alpine
meadow) and 0.975 (desert grassland), respectively, accord-
ing to Wang et al. (2008). To partly quantify the effects of
emissivity value uncertainty, simple sensitivity tests were
conducted. A 0.001 change in emissivity is on average found
to result in the LST change of 0.015 and 0.020 K for stations
Qinghai and Ngari, respectively.

2.2 MODIS land surface temperatures

Daily 1-km LST products of MODIS level 3 collection 5
are used in this study including the data from the Terra
(MOD11A1) and Aqua (MYD11A1) satellites. Both Terra
and Aqua generate two daily observations, including one for
daytime and one for nighttime. The two overpass times for
Aqua are approximately 01:30 and 13:30 local time (LT).
For Terra, these times are approximately 10:30 and 22:30 LT.
Accurate view times can be derived from the product. The
MODIS LST used here is retrieved using the generalized
split-window algorithm (Wan and Dozier, 1996). Accuracies
are reported to range within 1 K, but the uncertainties and er-
rors of emissivity used in the MODIS LST product can be
significant, which produces major errors (Wan et al., 2002).
Each grid of the MODIS LST product includes a quality con-
trol (QC) flag that ranges from 0 to 3 indicating the average
errors of < 1, 1–2, 2–3, and > 3 K. Records with a QC flag of
3 were omitted in this study.
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Table 1. Summary of the AWS sites.

AWS Long/Lat Mean annual Mean annual air Elevation Land cover Time period
precipitation temperature (m)

(mm) (◦C)

Xiao Dongkemadi 92.08/33.07 680 −8.6 5621 Glacier Jan 2009–Dec 2009
Ngari 79.70/33.39 125 1.2 4270 Desert grassland Jun 2012–Dec 2013
Qinghai 101.30/37.60 567 −1.7 3250 Alpine meadow Jan 2003–Dec 2004

The MODIS observations are instantaneous, whereas the
ground measurements used are half-hourly averaged. To
make them comparable, the timing of ground observations
recorded on Beijing time was converted to local solar time.
Then, half-hourly observations that were within 15 min of the
view times of MODIS record times were selected.

3 Methods

The procedure for analyzing cloud effects step by step are
outlined in Fig. 2, and described in detail as follows.

3.1 Cloud index estimations

Cloud observations are usually only available from non-
automatic weather stations and are difficult to record. In this
study, an efficient method was employed to estimate cloudi-
ness based on downwelling long-wave radiation (Ld) records
and air temperatures, which have been widely used in other
studies (Giesen et al., 2008; Yang et al., 2011; Østby et al.,
2014). This theory is mainly based on the principle that under
cloudy conditions, a long-wave radiation balance exists be-
tween cloud base and near surface (Giesen et al., 2008; Østby
et al., 2014). Under overcast conditions, both the cloud base
and the near surface radiate at similar temperatures and Ld
reaches its maximum. However, Ld should be much lower
under clear conditions than under overcast conditions un-
der the same temperature. In such a case, Ld reaches its
minimum. Thus, a maximum Ld can be reversed using the
Stefan–Boltzmann law under a given air temperature, and the
minimum Ld can be regressed using the polynomial fit of the
lower 5th percentile of the Ld observations for each specified
temperature interval (1 K here) (Østby et al., 2014). WhenLd
is assumed to linearly increase from clear to overcast condi-
tions at a given temperature, then a “cloud index” (CI) indi-
cating the cloudiness can be achieved (CI= 0 and 1 for clear
and overcast skies, respectively) (Giesen et al., 2008; Yang et
al., 2011; Østby et al., 2014). For example, for an observed
downwelling long-wave radiation whereLi is at the tempera-
ture Ti , if the Lmax and Lmin are the maximum and minimum
Ld under that temperature (Ti), respectively, then the CI is
determined as (Li −Lmin)/(Lmax−Lmin). Rather than the
visually observed percentage of cloud cover in the sky, the

CI used here represents the optical thickness of clouds (Van
Den Broeke et al., 2006).

3.2 Testing cloud effects on the accuracies of MODIS
LST

Undetected clouds may exist in the MODIS LST data as a
result of erroneous cloud identification. An evaluation of the
number of undetected clouds present was conducted first. As
considerable errors can be introduced by undetected clouds,
the effects of clouds on MODIS LST accuracies were eval-
uated by comparing validation (MODIS vs. observed LST)
results derived before and after removing the undetected
cloudy records. In this study, the records with CI > 0.5 are
considered to be under “mostly cloudy” conditions. For a
given MODIS observation, it is regarded as an undetected
cloud if its corresponding CI > 0.5.

In this study, all four MODIS observations derived from
the Terra and Aqua satellites were validated to identify and
explain the effects of clouds on Tair estimations. It should be
noted that the effects of undetected clouds may come from
or be mixed with the effects of residual/thin clouds (Plat-
nick et al., 2003), fogs (Østby et al., 2014) and some thick
aerosol layers (Huang et al., 2014) existing in the MODIS
pixel, which may impose errors on the MODIS LST product
to varying degrees. Even though these effects are hard to dis-
tinguish in detail, undetected clouds are generally considered
to have strong negative effects on the accuracies of MODIS
LST (Williamson et al., 2013; Østby et al., 2014; Shamir and
Georgakakos, 2014).

3.3 Tair estimation

Various statistical methods have been used for Tair estima-
tion using MODIS LST, including neural network (Jang et
al., 2004), random forests (Xu et al., 2014), M5 model tree
(Emamifar et al., 2013), and the simple linear regression
(Zhang et al., 2011; Benali et al., 2012; Lin et al., 2012).
Comparisons among the performances of six types of statisti-
cal models with different levels of complexity for Tair estima-
tion indicate that though there truly exist some cases where
advanced statistical models clearly outperform the simple
linear regression model, the absolute differences of accura-
cies produced by different models are generally not big, es-
pecially for cases using MODIS nighttime LST (Zhang et
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Figure 2. Flow chart describing the analysis and validation of cloud effects on air temperature estimation using MODIS LST in this study.

al., 2016). Compared with the complex models such as neu-
ral network and random forests, which introduce uncertain-
ties because they have a much larger number of parameters,
the linear regression model has the advantage of being easy
to interpret and was most commonly used in previous stud-
ies (Zhang et al., 2011; Benali et al., 2012; Lin et al., 2012).
In addition, an individual linear fit is built for each AWS or
CMA station to make the relationship between Tair and LST
as locally accurate as possible and thus, variables indicating
spatial coordinates (longitudes and latitudes) and land cover
(e.g., NDVI) are not used. Therefore, the linear regression
model using LST as the single independent variable is cho-
sen as the Tair-estimating method in this study.

3.4 Testing cloud effects by the observed LST

Large MODIS LST errors may exist due to undetected
clouds, and cloud effects are first tested using the ground-
measured LST. In this way, we can explore the direct ef-
fects of clouds on Tair estimation using LST. The tests are
conducted by constraining cloudiness conditions. Target Tair
values in most studies are daily (max, mean, or min) values,
but instantaneous cloudiness is meaningless. In this study,
the daily mean CI value is used as a cloudiness indicator. To
ensure a sufficient number of samples, nine types of condi-
tions with daily mean CI values ≤ 0.2, 0.3, ..., 0.9 and 1.0
are employed, indicating that the cloudiness constraints vary
from highly clear conditions (daily mean CI≤ 0.2) to fully
mixed conditions, with many highly cloudy days included
(daily mean CI≤ 1.0). For each condition, Tmax and Tmin
are regressed using daytime (13:30 LT, Aqua) and nighttime
(22:30 LT, Terra) observed LST through a simple linear re-
gression, and estimation accuracies are computed. The root-
mean-square error (RMSE) and mean absolute error (MAE)

are used as the accuracy measurements. Cloud effects are
evaluated based on the variation of the estimation accuracies
under different cloudiness conditions. Comparisons of Tmax
and Tmin estimations can reveal further implications of cloud
effects.

3.5 Determining cloud effects through comparisons
using MODIS and the observed LST

Once the effects of clouds on Tair estimations using ob-
served LST are confirmed, cloud effects on Tair estimation
using MODIS LST can be explored more directly. Apart
from affecting the relationship between Tair and MODIS
LST, clouds can degrade the MODIS LST accuracy and fur-
ther reduce estimation accuracies. Such effects, when they
are present, can be explored by comparing changes in esti-
mation accuracy levels between observed LST and MODIS
LST. Here, Tair (Tmin and Tmax) estimations for nine kinds
of CI conditions are conducted using MODIS LST and ob-
served LST (at the corresponding MODIS time). The results
are analyzed based on comparisons.

3.6 Exploring cloud effects based on observations from
meteorological stations

In practice, only daily observations can be easily obtained
from meteorological stations, and cloudiness observations
are usually not provided. In this study, only daily Tmax and
Tmin data are obtained from the 92 CMA stations. Nonethe-
less, daily cloudiness levels can be partly evaluated from four
MODIS observations for each day (two from Terra and two
from Aqua). Then, comparisons of Tair estimation for two
distinct cloudiness conditions are drawn.

Two conditions (“cloudy day” and “non-cloudy day”) are
defined based on four instantaneous MODIS observations
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Figure 3. The distribution of observed downward long-wave radiation (DLW) under different air temperatures. The red line represents the
max DLW curve reversed from the Stefan–Boltzmann law. The blue line is the min DLW curve fitted by a quadratic polynomial.

Table 2. Undetected MODIS LST clouds at three AWSs.

Site Ratio of undetected cloudy records

Terra day Terra night Aqua day Aqua night
(%) (%) (%) (%)

Ngari 5 3 3 15
Xiao
Dongkemadi 12 15 11 37
Qinghai 3 20 3 50

Average 7 13 6 34

for each day for both the Tmax and Tmin estimation using
Aqua daytime LST and Terra nighttime LST, respectively.
For “non-cloudy day” conditions, all four MODIS cloudiness
observations are constrained as non-cloudy. For the “cloudy
day” condition of the Tmax estimation, Aqua daytime obser-
vations are constrained as non-cloudy to obtain the avail-
able LST, and Terra daytime observations are constrained as
cloudy to make cloud effects as strong as possible. However,
the Aqua nighttime and Terra nighttime observations are
not constrained to obtain sufficient samples. For the “cloudy
day” condition of the Tmin estimation, the Terra nighttime ob-
servations are constrained as non-cloudy to obtain the avail-
able LST, whereas the Aqua nighttime observations are not
constrained to obtain sufficient samples. Both Aqua daytime
and Terra daytime observations are constrained as cloudy to
make the cloud effects as strong as possible. Tmax and Tmin
estimation accuracies are then compared under “cloudy day”
and “non-cloudy day” conditions.

4 Results

4.1 Cloud index estimation and the undetected clouds
of MODIS

Figure 3 shows that the maximum and minimum Ld curves
effectively frame Ld variation for each air temperature. The
CI values of all of the observations are then computed.

For each of the four overpass times of MODIS LST, a
rate of undetected cloudy records can be determined using
CI values (Table 2). The ratio of undetected cloudy records
ranges from 3 to 50 % with a fully averaged ratio of 15 %.
This agrees well with the reported value of ∼ 15 %, which
was computed based on a consistency comparison between
MODIS and Lidar (Ackerman et al., 2008).

4.2 MODIS LST validation under different cloud
conditions

The accuracy of MODIS LST can be affected by undetected
cloudy pixels (Westermann et al., 2012; Shamir and Geor-
gakakos, 2014). Figure 4 shows that after removing cloudy
cases, the validation accuracies of all three sites present ob-
viously lower MAE values and a better fit line slope. Im-
provements in accuracy for six (2 pass times × 3 stations)
nighttime cases range from 0.1 to 0.9 ◦C. However, no sig-
nificant accuracy improvements were found after removing
cloudy cases for daytime MODIS LST (Fig. 5). Only slightly
better or comparative MAEs (≤ 0.1 ◦C) were obtained.

This indicates that the accuracy of MODIS nighttime LST
is more negatively affected by undetected clouds than that
for daytime. The relatively weak influences of undetected
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Figure 4. Validation of MODIS nighttime LST before (a) and after (b), excluding cloudy cases.

clouds on daytime LST is mainly due to obviously lower er-
roneous rates of cloud detection compared to those of night-
time LST. Erroneous rates of MODIS nighttime cloud detec-
tion are clearly larger than those for the daytime, though not
in the case of the Terra LST observed for Ngari. This can be
largely attributed to differences in cloud-detection methods
used for daytime and nighttime. The cloud-detection algo-
rithm of MODIS is considered to present more confidence
for the daytime than for the nighttime due to the absence of
reflected solar radiation during nighttime (Ackerman et al.,
1998). This finding is consistent with previous studies show-
ing that more than 40 % of the observed cloudy days are iden-
tified as clear days by MODIS at polar summer nighttime
(Østby et al., 2014).

4.3 The effects of clouds on Tair estimation based on
ground-observed LST

Figure 6 shows the accuracy of Tair estimations based on
ground-observed LST under different cloudiness conditions
across the three sites. For Tmax, estimation errors including

RMSE and MAE continually increased as the cloudiness
condition constraints eased. The increase in RMSE/MAE
values for clear conditions (daily mean CI≤ 0.2) com-
pared with totally mixed conditions (daily mean CI≤ 1) was
1.3/1.0, 0.8/0.8, and 1.6/1.6 ◦C for the Ngari, Xiao Dongke-
madi, and Qinghai stations, respectively. In contrast, for Tmin,
accuracy variation is consistently mild across the three sites,
presenting RMSE/MAE changes of 0.1/0.0, 0.1/0.0, and
0.7/0.6 ◦C for the Ngari, Xiao Dongkemadi, and Qinghai sta-
tions, respectively. It should be noted that when the “cloudi-
ness condition” exceeds 0.6 (x > 0.6), the sample number no
longer varies and due to the limited number of samples, the
variation of Tmax and Tmin estimation accuracy is rather flat.

As expected for cases based on ground-observed LST, the
Tmax estimation is significantly affected by cloud conditions,
but clouds have a limited effect on the Tmin estimation com-
pared to Tmax. This interesting finding can be explained by
mechanisms through which clouds affect nighttime and day-
time surface temperatures. In the daytime, LST is signifi-
cantly influenced by solar heating. The presence of clouds

www.atmos-chem-phys.net/16/1/2016/ Atmos. Chem. Phys., 16, 1–16, 2016
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Figure 5. Validation of MODIS daytime LST before (a) and after (b), excluding cloudy cases.

can screen out solar radiation and cool the surface. Much
larger differences between LST and Tair have been observed
under cloudy days than under clear conditions (Gallo et al.,
2011). At night, the surface can also present warming effects
from clouds due to reflected infrared long-wave radiation.
However, such effects are not typically significant because
the net effect of clouds on surface downward long-wave ra-
diation is much less pronounced than nighttime solar cooling
effects in most cases, as indicated by Dai et al. (1999).

4.4 The effects of clouds on Tair estimation based on
MODIS LST

Figure 7 compares cloud effects on Tmin and Tmax estima-
tions using MODIS and observed LST. First, despite rather
mild effects of cloud conditions on Tmin estimation based
on ground-observed LST, cloud effects based on MODIS
LST are clearly much more significant. For cases based on
MODIS LST, increases in RMSE between clear (daily mean
CI≤ 0.2) and mixed conditions (daily mean CI≤ 1.0) are 0.5,
0.8, and 1.8 ◦C for the Ngari, Xiao Dongkemadi, and Qinghai

stations, respectively. However, cloud effects for cases based
on observed LST are significantly lower with corresponding
values of 0.0, −0.1, and 0.2 ◦C.

This indicates that Tmin estimations based on MODIS
LST are greatly affected by clouds. This seems counterin-
tuitive, as it has been shown that Tmin estimations based
on ground-observed LST are not significantly affected by
clouds (Fig. 6). Thus, the most probable driving factor may
be the relatively large amount of undetected clouds present
in MODIS nighttime LST. As daily cloud indexes increase,
more undetected cloudy cases may be introduced, thus re-
ducing the accuracy of MODIS nighttime LST (Fig. 4 and
Table 2).

Figure 8 (upper section) supports the conclusion that un-
der clear conditions the undetected clouds are rare, and lim-
ited accuracy improvements are achieved by removing the
few cloudy MODIS LST records; however, as daily CI con-
straints ease to 0.5 when cloudy records account for a sub-
stantial proportion, obvious improvements appear, and the fi-
nal accuracies are much closer to and are even better than
those based on ground-observed LST.

Atmos. Chem. Phys., 16, 1–16, 2016 www.atmos-chem-phys.net/16/1/2016/
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Figure 6. Accuracies (RMSE and MAE) of Tmax and Tmin estimations based on ground-measured LST under different cloudiness conditions
across the three sites. The “cloudiness condition” is the constraining condition of the daily averaged cloudiness index (CI). For example, a
cloudiness condition of 0.2 denotes a constraining daily mean of CI≤ 0.2.

Figure 7. Accuracies (RMSE) of Tmax and Tmin estimations based on ground-measured or MODIS LST under different cloudiness conditions
for the three AWSs. The “cloudiness condition” is the constraining condition of the daily averaged cloudiness index (CI). For example, a
cloudiness condition of 0.2 denotes a constraining daily mean of CI≤ 0.2.
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Figure 8. Comparisons between Tmin and Tmax estimation accuracies based on MODIS LST, MODIS LST without cloudy data, and observed
LST under different cloudiness conditions for the three AWSs.

Unlike that of Tmin, the accuracy variation of Tmax estima-
tion based on MODIS LST shows trends that are highly con-
sistent with those of cases based on ground-observed LST for
all of the three sites. As with cases based on ground-observed
LST, Tmax estimations based on MODIS LST are found to
be greatly affected by clouds. In addition, increases in ac-
curacy level differences between clear and mixed conditions
are much less pronounced compared to those of Tmin, where
difference values are only 0.0, 0.2, and 0.3 ◦C for the Ngari,
Xiao Dongkemadi, and Qinghai stations, respectively (Tmax
estimation based on MODIS LST vs. that based on ground-
observed LST).

However, the accuracy levels achieved from MODS LST
after removing cloudy records are obviously lower than those
based on ground-observed LST under all cloudiness condi-
tions. This raises questions regarding what this difference
in accuracy can be attributed to. Dominant factors may not
be undetected clouds, as was the case for Tmin. As shown
in Fig. 8 (lower section), the removal of cloudy records had
somewhat moderate effects on accuracy levels. This may be
largely due to much lower erroneous rates of cloud identifica-
tion for MODIS daytime LST. The obviously lower number
of undetected clouds compared to nighttime LST values for
the Ngari and Qinghai stations results in relatively limited
accuracy improvements. The relatively large decrease in es-
timation errors for the Xiao Dongkemadi station is mainly
due to unexpectedly higher amounts of undetected clouds in
MODIS daytime LST for that site (Table 2 and Fig. 8).

Furthermore, even under clear conditions, the accuracy of
Tmax estimations based on MODIS LST is remarkably lower
than that based on ground-observed LST (Fig. 7). Thus, the
decrease in accuracy levels relative to cases based on ground-
observed LST may be caused by factors other than unde-
tected clouds. This seems odd, especially given that the ac-
curacies of Tmin estimations based on MODIS LST are very
close to or even better than those based on observed LST un-
der clear conditions (Fig. 7).

4.5 Effects of clouds on Tair estimation based on
MODIS LST and CMA observations

Figure 9 shows the estimation accuracies of Tair based on
MODIS LST for non-cloudy and cloudy conditions. For the
Tmax estimation, clouds appear to have moderate effects on
estimation accuracies, where 88 % of the 92 stations obtained
lower RMSEs based on samples from “non-cloudy” condi-
tions relative to cloudy cases. RMSE values are reduced by
an average of 0.54 ◦C. In contrast, effects of clouds on Tmin
estimations are much more significant: the RMSEs of 98 %
of stations are reduced by an average of 1.44 ◦C. Though
hourly observations in the data for CMA stations are lack-
ing, the results for the cloud tests are highly consistent with
those based on half-hourly AWS observations.

Furthermore, a comparison between the Tmax and Tmin es-
timation results based on MODIS LST and CMA observa-
tions shows that under cloudy conditions Tmax estimations
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Figure 9. Comparisons of Tair estimation accuracy levels based on MODIS LST and CMA observations for “non-cloudy day” and “cloudy
day” conditions.

(the mean RMSE is 4.3 ◦C) achieve generally higher levels of
accuracy than Tmin estimations (the mean RMSE is 4.6 ◦C),
whereas non-cloudy conditions produce the opposite effect
(3.7 vs. 3.2 ◦C). This illustrates a potentially stronger nega-
tive effect of cloud on Tmax estimation than on Tmin estima-
tion.

5 Discussion

5.1 Differences in the effects of clouds on Tmin and
Tmax estimations based on MODIS LST

From MODIS LST and daily CMA observations, different
cloud effects between Tmax and Tmin estimations can be iden-
tified from Fig. 9. Under cloudy conditions, the existence of
more undetected cloudy records in MODIS nighttime LST
largely degrades the LST accuracy and results in obviously
lower Tmin-estimation accuracy levels. However, why the
Tmin estimations clearly outperform Tmax under clear con-
ditions (non-cloudy day conditions) when both are free of
cloud effects remains unknown. One may argue that the so-
called “clear” conditions are based on only four satellite in-
stantaneous observations and that actual cloudiness condi-
tions may still be cloudy. Although this is true, our study
shows that even under clear conditions the accuracy of Tmax
estimations based on daytime MODIS LST is much lower
than those based on observed LST, whereas the Tmin estima-
tion based on nighttime MODIS LST shows comparable or
even superior accuracy.

From our previous analysis, we can attribute this differ-
ence in estimation accuracy between Tmin and Tmax to differ-
ences between daytime and nighttime MODIS LST. Much

lower levels of MODIS daytime LST accuracy than those of
nighttime have been found in previous studies (Yu and Ma,
2011; Krishnan et al., 2015; Min et al., 2015), and the valida-
tion tests shown in Figs. 4 and 5 also support this conclusion.
This precision bias is most likely attributable to scale issues
(Wan et al., 2002; Wan, 2008). Single point measurements
are difficult to make representative of the 1 km MODIS pixel
when ground surfaces are complex (Hall et al., 2008; Coll et
al., 2009). Many studies have shown that MODIS daytime
LST presents obviously lower levels of validation accuracy
than nighttime LST due to high levels of daytime LST het-
erogeneity (Wang et al., 2008; Coll et al., 2009). In the day-
time, cloud and hill shadows within pixels can produce con-
siderable LST heterogeneities, while at night, the ground sur-
face becomes cool and more homogeneous when free of solar
heating uncertainties (Wang et al., 2008). Oyler et al. (2016)
also show that daytime LST exhibits more spatial variation
than Tair, while nighttime LST follows similar spatial pat-
terns as Tair, as demonstrated in this study.

In addition, it should be noted that clouds also have sub-
stantial effects on Tmax estimation. Thus, it can be concluded
that the frequently reported lower estimation accuracies of
Tmax based on MODIS daytime LST compared to those of
Tmin based on nighttime LST (Zhang et al., 2011; Benali et
al., 2012; Zhu et al., 2013; Oyler et al., 2016) are mainly due
to the mixed effects of clouds and the relatively low daytime
LST accuracies.

To further prove this, four CMA stations (Fig. 10) present-
ing the largest reduction in RMSE values after imposing clear
conditions are selected for our Tmin and Tmax estimations.
They can represent practical application conditions where
only daily meteorological observations can be obtained.
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For Tmax estimation (Fig. 11), it is evident that forcing
clear conditions has somewhat limited effects on estimation
performance. The samples collected under “cloudy day” con-
ditions include outliers far from the fit line derived using
samples under “non-cloudy day” conditions. However, the
“non-cloudy day” samples still appear rather dispersed, with
many samples positioned far from the fit line, and especially
in the case of stations 89 and 41. This may illustrate mixed
effects of both clouds and LST accuracies to some degree.

In contrast, the results of the Tmin estimation are somewhat
inspiring. As shown in Fig. 12, a number of cold-biased out-
liers that may be undetected cloudy records are captured by
employing cloudy conditions. More importantly, the “non-
cloudy day” condition samples achieve a much better fit.
This not only demonstrates that undetected cloudy records
are ubiquitous in MODIS nighttime LST and that amounts
can often be quite large, but also that the influence of clouds
on Tmin estimations with true LST (i.e., without undetected
clouds) is not substantial. Though the actual cloudiness con-
ditions are rather unpredictable and quite a few “good” sam-
ples around the “non-cloudy day” fit line are also included
in the “cloudy day” group, we consider constraining all four
MODIS observations for each day as non-cloudy as an effi-
cient way to build a good fit among Tmin estimations using
MODIS nighttime LST, as long as the amount of valid sam-
ples is sufficient. This method can benefit studies requiring
accurate Tmin estimations based on remotely sensed LST.

5.2 Uncertainty and error sources

Emissivity issues may have caused the observed LST com-
putation errors. Constant emissivity values for the Ngari and
Qinghai stations are used in our study, although this may not
be reasonable for non-growing seasons. However, the sensi-
tivity experiments show that the influence of emissivity val-
ues is not significant.

The ≤ 15-min discrepancy may introduce uncertainties in
data that intersect Tair and MODIS and observed LST. Its
influence is considered to be insignificant. Nighttime LST
changes gently and half-hourly observations can be used for
MODIS LST validation as indicated in Wang et al. (2008).
Tair also responds relatively slowly to LST, and MODIS day-
time LST shows a strong relationship to Tair at a similar time
discrepancy level (≤ 12 min) to that shown by Williamson et
al. (2013). Spatial heterogeneities within MODIS pixels of
AWS may pose problems. As shown in Fig. 1, such problems
may not be severe, as land cover within the pixels of the three
AWSs appears to be largely homogeneous. The data quality
of MODIS LST does not receive sufficient consideration in
this study. MODIS LST production involves the use of inter-
nal data quality flags and previous studies demonstrate that
data quality is related to cloud contamination (Williamson et
al., 2013; Østby et al., 2014).

The validation accuracy of MODIS LST is affected by data
quality (Krishnan et al., 2015). However, rigid data quality

Figure 10. Locations of four representative CMA stations for Tmin
(Nos. 54, 56, 72, 86) and Tmax (Nos. 3, 5, 41, 89) estimations.

constraints may severely decrease sample sizes due to the
relatively short observation periods (1–2 years) used. This
study presents results of general quality status and extremely
low-quality data (QC= 3) have been removed. Other fac-
tors, including wind speeds and sensor view zenith angles,
may affect results related to MODIS LST validation and the
relationship between Tair and LST. According to Wang et
al. (2008), the validation results are not or are weakly af-
fected by wind speed and the sensor view zenith angle. Wind
speed has a limited effect on the Tair–LST relationship, as
shown by Gallo et al. (2011).

In addition, the results shown here are highly consistent
across the three AWSs dominated by three types of land
cover, thus indicating that our results may be highly repre-
sentative and that other factors may not have played a key
role.

6 Conclusion

Cloud effects on Tmin and Tmax estimations according to
MODIS LST are analyzed based on detailed ground-based
observations from three valuable AWSs and based on data
from 92 CMA stations over the TP. Cloudiness is quantified
using an efficient method based on ground measurements of
air temperature and downwelling long-wave radiation. Com-
parisons made between in situ cloudiness observations and
MODIS-claimed clear-sky records show that erroneous rates
of MODIS nighttime cloud detection are obviously larger
than those for the daytime. Our MODIS LST validation for
different cloudiness constraining conditions reveals that the
accuracy of MODIS nighttime LST is severely affected by
undetected clouds. However, the accuracies of MODIS day-
time LST do not seem to be influenced by undetected clouds.

Cloud effect tests show that Tmin estimations based on
MODIS LST are mainly affected by large errors introduced
by undetected clouds in nighttime LST. However, clouds
mainly influence Tmax estimation by affecting the relation-
ship between Tmax and daytime LST. The effects of unde-
tected clouds in daytime LST are relatively weak. Frequently
reported errors in Tmax estimations based on daytime LST
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Figure 11. Comparisons of Tmax estimation accuracy between “cloudy day” and “non-cloudy day” conditions at four meteorological stations
presenting the largest decline in RMSE.

Figure 12. Comparisons of Tmin estimation accuracy between “cloudy day” and “non-cloudy day” conditions at four meteorological stations
presenting the largest decline in RMSE.

that are larger than those of Tmin based on nighttime LST may
be largely attributed to relatively large errors of MODIS day-
time LST resulting from scale issues. Tests based on CMA
station observations further validate our results and show that
constraining all four MODIS observations per day as non-

cloudy helps rule out undetected cloudy records while build-
ing good Tmin estimation fit.

This study presents useful findings on the key effects of
clouds on Tair estimation based on MODIS LST that can al-
leviate problems of severe data sparseness over the TP. More
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efficient cloud detection methods for MODIS nighttime LST
are needed for Tmin estimations. Tmax estimation based on
daytime LST is rather challenging due to the complex effects
of daily cloudiness conditions in combination with scale is-
sues.

7 Data availability

The data of Xiao Dongkemadi station are available upon
request to the Tanggula Station for Cryosphere Environ-
ment Observation and Research (hxb@lzb.ac.cn). The data
of Ngari station are available upon request to the Ngari
Station for Desert Environment Observation and Research
(ldt@itpcas.ac.cn). The data of Qinghai station can be down-
loaded from AsiaFlux (AsiaFlux, 2016). The daily air tem-
perature data of meteorological stations are available at http:
//data.cma.cn (Chinese Meteorology Administration, 2014).
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