
Journal of Hydrology 592 (2021) 125795

Available online 27 November 2020
0022-1694/© 2020 Elsevier B.V. All rights reserved.

Research papers 

Enhanced scaling effects significantly lower the ability of MODIS 
normalized difference snow index to estimate fractional and binary snow 
cover on the Tibetan Plateau 

Hongbo Zhang a,b,c,*, Fan Zhang d,e,f, Guoqing Zhang d,e, Wei Yan g, Sien Li a 

a College of Water Resources & Civil Engineering, China Agricultural University, Beijing, China 
b State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China 
c State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China 
d Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, China 
e CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China 
f University of Chinese Academy of Sciences, Beijing, China 
g School of Geographic Sciences, Xinyang Normal University, Xinyang, China   

A R T I C L E  I N F O   

This manuscript was handled by Dr Emmanouil 
Anagnostou Editor-in-Chief  

Keywords: 
Scaling effects 
MODIS fractional snow cover 
Binary snow cover 
NDSI threshold 
Tibetan Plateau 

A B S T R A C T   

MODIS fractional (FSC) and binary (BSC) snow-cover data are important for obtaining accurate spatiotemporal 
snow-cover information for the Tibetan Plateau (TP) where rapid warming is closely related to snow-cover 
changes. However, FSC and BSC data are no longer provided in the newly released version (v6) of the MODIS 
snow cover product, having been replaced with normalized difference snow index (NDSI) data. Recent studies 
have observed clearly lower accuracy of MODIS snow cover data on the TP than in other areas, possibly implying 
that there are strong scaling effects due to the complex terrain and land cover which are not well understood. A 
total of 353 Landsat-8 scenes covering most parts of the TP are used to establish a new empirical relationship 
between FSC and MODIS NDSI for FSC estimation and a new NDSI threshold for BSC estimation. The results 
indicate that the new regression model (mean root-mean-squared-deviation (RMSD): 0.22) has a better FSC 
estimation accuracy than the previously used global reference equation (mean RMSD: 0.24) and that the new 
NDSI threshold of 0.29 (mean Cohen’s Kappa (CK): 0.49) outperforms the global reference NDSI threshold of 0.4 
(mean CK: 0.40) in BSC estimation. The relatively low accuracy could be due to an enhanced scaling effect. The 
30-m Landsat-8 NDSI data are upscaled to 500-m (MODIS) to analyze the scaling effects on FSC and BSC esti-
mates made using MODIS NDSI. We find that the methods using MODIS NDSI have much lower estimation 
accuracy, for both FSC and BSC, compared with those using upscaled Landsat-8 NDSI. An analysis of variance 
(ANOVA) test which considers 512 combinations of aspect, slope and normalized difference vegetation index 
(NDVI) further demonstrates that the enhanced scaling effects are mainly caused by terrain factors (i.e. aspect 
and slope). The optimal NDSI threshold for estimating BSC generally increases with slope and decreases as the 
aspect varies from the southeast to northwest. This study has important implications for the optimal use of 
MODIS NDSI snow cover data on the TP and highlights the importance of developing more advanced methods 
which take more factors into account.   

1. Introduction 

Snow is a key component of the cryosphere and has important effects 
on climate and water resources. Snow cover, with its high albedo, is 
closely linked to regional climate change via the “snow albedo feedback” 
mechanism (Ma et al., 2020; Thackeray et al., 2019). In addition, in 
high-elevation areas such as the Himalayas, seasonal snow melt is an 

important source of water (Armstrong et al., 2019). Therefore, accurate 
snow cover information is crucial for research on the Tibetan Plateau 
(TP), where snow cover changes play a key role in the “Elevation 
Dependent Warming” (Pepin et al., 2019; You et al., 2019), and where 
snow melt makes relatively large contributions (>20%) to total runoff in 
the headwater catchments of several major Asian rivers (Zhang et al., 
2013b). 

In mountainous areas, remote sensing is often the most efficient way 
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to carry out large-scale snow mapping, due to the sparse coverage of 
ground-based observations (Zhang and Ma, 2018). This is especially the 
case for the TP, which has an average elevation greater than 4000 m a.s. 
l. and no regular weather stations above 5000 m. As snow has a rela-
tively high reflectance in the visible wavelengths and a relatively low 
reflectance in the shortwave infrared band, the normalized difference 
snow index (NDSI) is commonly used for snow detection for a wide 
range of sensors, including MODIS (Moderate Resolution Imaging 
Spectroradiometer), Landsat TM (Thematic Mapper), ETM+ (Enhanced 
Thematic Mapper Plus), OLI (Operational Land Imager) and Sentinel-2 
MSI (MultiSpectral Instrument) (Crawford, 2015; Gascoin et al., 2019; 
Hall et al., 1995; Salomonson and Appel, 2004; Yin et al., 2013). Out of 
these products, the MODIS daily snow cover, with its relatively high 
temporal frequency (twice a day), is probably the most popular, 
although it does have a somewhat coarse spatial resolution of ~500 m. 
Many studies have used MODIS fractional or binary snow-cover data for 
the TP for a variety of applications, such as analyzing the changes in 
snow-cover area (Pu et al., 2007; Zhang et al., 2013a), snow line 
(Choubin et al., 2019; Tang et al., 2014), snow-covered days (Tang et al., 
2013a; Zhang et al., 2012) and snow-cover phenology (Wang et al., 
2017), and for providing important snow cover information for driving, 
calibrating or verifying hydrological models (Immerzeel et al., 2009; 
Shrestha et al., 2011; Zhang et al., 2015). In addition, most of the 
composite snow-cover products use MODIS snow cover data as an 
important input (Chen et al., 2018; Huang et al., 2017; Yu et al., 2016). 

However, the MODIS fractional and binary snow-cover data are no 
longer provided in the newest version (v6) of the MODIS snow-cover 
product (Riggs et al., 2016b). A good linear relationship between 
NDSI and snow-cover fraction was the theoretical basis of MODIS frac-
tional snow-cover (FSC) data (Riggs et al., 2006). The original regression 
equation was developed from 14 Landsat scenes and subsequently 
implemented as a global reference equation for producing MODIS Terra 
FSC data around the world, with the validation root-mean-squared- 

deviation (RMSD) and correlation coefficient (R) reported to be about 
0.1 and 0.9, respectively (Salomonson and Appel, 2006). The MODIS 
binary (i.e., snow or non-snow) snow cover data (BSC) uses the 
assumption that when the NDSI threshold >0.4 at least 50% of the pixel 
is covered by snow (Crawford, 2015). However, increasingly, evidence 
suggests that either the globally applied equation, or the spatially fixed 
NDSI threshold, might not be optimal for local applications with varia-
tions in landscape and satellite viewing conditions (Härer et al., 2018; 
Mishra et al., 2009; Riggs et al., 2017). Thus, both FSC and BSC have 
now been replaced by NDSI snow-cover data containing only NDSI 
values for each pixel. These data are expected to be suitable for a wider 
range of applications. This change poses important questions about what 
regression equation between FSC and MODIS NDSI should be applied, 
and which NDSI threshold should be used, when using the new MODIS 
snow cover product on the TP. Some recent studies, based on daily snow 
depth observations (Zhang et al., 2020, 2019b), suggest that 0.1 is the 
optimal NDSI threshold for BSC estimation in China (including the TP). 
However, their sparse snow-depth observations may not represent 
actual FSC. The value of FSC which corresponds to an NDSI threshold of 
0.1 also remains unclear. 

The scale issue is an important factor affecting the estimation accu-
racy of remotely sensed variables (McCabe and Wood, 2006). Land- 
surface heterogeneity including different topography and land-cover 
conditions has been demonstrated to greatly impact the prediction of 
various environmental parameters, such as leaf area index (Garrigues 
et al., 2006; Liang, 2000), surface energy flux (Kustas et al., 2004) and 
evapotranspiration (Long et al., 2011; Sharma et al., 2016). In these 
studies, the aggregation of higher-resolution satellite images (e.g. 30 m 
Landsat missions) to larger pixel sizes, such as 500 m and 1 km, is a 
common way to mimic lower-resolution sensors. Recent studies have 
also found that, while the accuracy of MODIS snow cover data is 
generally good for stations outside the TP, it is much worse for those 
within the TP (Zhang et al., 2019b). Thus, there could be strong scaling 

Nomenclature 

BSC Binary snow cover 
B3L8_30m Landsat-8 band 3 at the original resolution of 30 m 
B3L8_500m Landsat-8 band 3 aggregated to MODIS scale (i.e. ~500 

m) 
B4L8_30m Landsat-8 band 4 at the original resolution of 30 m 
B5L8_30m Landsat-8 band 5 at the original resolution of 30 m 
B6L8_30m Landsat-8 band 6 at the original resolution of 30 m 
B6L8_500m Landsat-8 band 6 aggregated to MODIS scale (i.e. ~ 500 

m) 
FSC Fractional snow cover 
LAI A type A model that takes NDSIL8I as the independent 

variable and snow cover fraction as the dependent variable 
LAIU An LAI model of the average (or “universal”) linear 

relationships that are established using samples from all 
the 201 training scenes 

LAM A type A model that takes NDSIL8M as the independent 
variable and snow cover fraction as the dependent variable 

LAMU An LAM model of the average (or “universal”) linear 
relationships that are established using samples from all 
the 201 training scenes 

LBI A type B model that takes snow cover fraction as the 
independent variable and NDSIL8I as the dependent 
variable 

LBIU An LBI model of the average (or “universal”) linear 
relationships that are established using samples from all 
the 201 training scenes 

LBM A type B model that takes snow-cover fraction as the 

independent variable and NDSIL8M as the dependent 
variable 

LBMU An LBM model of the average (or “universal”) linear 
relationships that are established using samples from all 
the 201 training scenes 

MA A type A model that takes MODIS normalized difference 
snow index as the independent variable and snow-cover 
fraction as the dependent variable 

MAU An MA model of the average (or “universal”) linear 
relationships that are established using samples from all 
the 201 training scenes 

MB A type B model that takes snow-cover fraction as the 
independent variable and MODIS normalized difference 
snow index as the dependent variable 

MBU An MB model of the average (or “universal”) linear 
relationships that are established using samples from all 
the 201 training scenes 

MR The global reference model that was used for producing 
global MODIS snow-cover fraction 

NDSIL8_30m Landsat-8 normalized difference snow index at the 
original resolution of 30 m 

NDSIL8I The normalized difference snow index calculated with 
pixel-aggregated Landsat-8 bands (as Input) 

NDSIL8M The Mean normalized difference snow index that is 
calculated by aggregating all the corresponding 30-m 
Landsat-8 normalized difference snow index values within 
a MODIS pixel 

NDSIMOD MODIS normalized difference snow index  
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effects on FSC and BSC estimates for the TP. However, to-date, few 
studies have investigated the scaling effects on FSC or BSC estimation 
using NDSI. Härer et al. (2018) calibrate the NDSI threshold for a range 
of spatial resolutions, from 30 m to 990 m, using a camera-based snow- 
cover map, but they do not test for MODIS snow-cover data. The effects 
of elevation or land-cover types on the accuracy of MODIS snow cover 
data have been analyzed (Arsenault et al., 2014; Huang et al., 2011; 
Rittger et al., 2013; Zhang et al., 2019b), but the scale influence on FSC 
or BSC estimation from MODIS NDSI is poorly understood, especially for 
the TP. 

Moderate resolution Landsat images have been used for validating 
MODIS fractional snow-cover data or developing new local relationships 
(Czyzowska-Wisniewski et al., 2015; Dobreva and Klein, 2011; Hou 
et al., 2020; Kuter et al., 2018; Wang et al., 2018). For example, Rittger 
et al. (2013) assessed MODIS snow-cover data based on 172 Landsat 
images, but only 25 of these were of the TP, and these were clustered in 
the Nepal Himalayas. The limited number and spatial coverage of 
reference images restricts our knowledge about snow mapping accuracy 
using MODIS NDSI and the factors influencing it. Obviously, more 
reference scenes should be used to increase the spatial representative-
ness and to establish a more reliable NDSI threshold for BSC estimation 
and a more reliable FSC relationship for FSC estimation. 

Here, our objectives are: (1) re-evaluate the ability of the global 
linear regression equation to estimate FSC from MODIS NDSI and 
establish a new, more accurate equation for the TP; (2) determine the 
optimal NDSI thresholds for detecting snow pixels with FSC > 50% for 
the TP; (3) investigate scaling effects on the accuracy of both MODIS BSC 
and FSC estimation. For the first time, as many as 353 Landsat OLI 
scenes from across the TP are used to examine FSC and BSC estimates 
based on MODIS NDSI. To the best of our knowledge, this is also the first 
study to investigate scaling effects on FSC and BSC estimates from 
MODIS NDSI by making a comparison with upscaled Landsat-8 NDSI 
data. The paper is organized as follows: the data used, including MODIS 
NDSI snow-cover data, Landsat-8 OLI reference data and other auxiliary 
data are described in Section 2; The methods used for FSC and BSC 
estimation based on MODIS NDSI and upscaled Landsat-8 NDSI, and 
scale influence are presented in Section 3; Results concerning the ac-
curacy of the new regression model and also new optimal NDSI 
thresholds for FSC and BSC estimates made using MODIS NDSI are 
presented in Section 4, along with a discussion of the influence of scaling 
factors, uncertainties and limitations. 

2. Data 

2.1. MODIS NDSI snow-cover data 

We use the “MODIS/Terra Snow Cover Daily L3 Global 500 m SIN 
Grid, Version 6” data sets because Terra and Landsat-8 have similar 
overpass times. The data used are for the period 2013–2015. The MODIS 
NDSI data contains two layers: “NDSI_Snow_Cover” and raw NDSI. 
MODIS NDSI (NDSIMOD) is calculated following equation (1). 

NDSIMOD = (M4 − M6)/(M4+M6) (1)  

where M4 is the MODIS visible light band 4 (wavelength: 0.545–0.565 
μm) and M6 is the shortwave infrared band 6 (1.628–1.652 μm). 
NDSI_Snow_Cover only contains NDSI values in the range 0.1–1, since 
values less than 0.1 are converted to 0, indicating non-snow. The raw 
NDSI data layer includes the entire range of NDSI values, including 
negative values. Since the original empirical equation, used in previous 
MODIS snow products, was developed based on the entire range of NDSI 
(Salomonson and Appel, 2004, 2006), the raw NDSI values are used 
here. It should be noted that, to reduce uncertainties, we have excluded 
all NDSI pixels that did not pass the screening tests of the product due to 
low visible reflectance, high surface temperature, high shortwave 
infrared reflectance or low illumination conditions (Riggs et al., 2016a). 

2.2. Landsat 8 OLI reference data 

Landsat 8 OLI data are used as the FSC “truth” following Kuter et al. 
(2018) and Hou et al. (2020). These data have a relatively high spatial 
resolution of about 30 m but also a relatively long revisit time of about 
16 days. Initially, all the available Landsat 8 Level 1 T scenes with cloud 
cover <10% during 2013–2015 were downloaded from the USGS Earth 
Resources Observation and Science (EROS) Center Science Processing 
Architecture (ESPA). These are provided as top-of-atmosphere (TOA) 
reflectance through the online service of ESPA. They are then classified 
as snow or non-snow pixels based on the SNOMAP algorithm (Hall et al., 
1995). The NDSI for each 30-m Landsat-8 pixel (NDSIL8_30m) is initially 
calculated according to Equation (2): 

NDSIL8 30m = (B3L8 30m − B6L8 30m)/(B3L8 30m +B6L8 30m) (2)  

where B3L8_30m is Landsat-8 OLI Band 3 (green, wavelength: 
0.525–0.600 μm) and B6L8_30m is Band 6 (shortwave near-infrared, 
wavelength: 1.560–1.660 μm). It should be noted that the subscript 
“_30m” is used to distinguish the band or NDSI at the original resolution 
of 30 m from that at the upscaled resolution of 500 m. The pixels with 
NDSI > 0.4, Band 3 > 0.1 and Band 5 > 0.11 are classified as 30-m snow 
pixels. The FSC “truth” is calculated for each 500-m MODIS NDSI pixel, 
by counting the number of 30 m snow pixels contained in the corre-
sponding MODIS pixel: the method used in the development of the 
MODIS FSC algorithm (Salomonson and Appel, 2004, 2006). Due to the 
difficulty inherent in distinguishing snow from clouds in Landsat 8 OLI 
data (Stillinger et al., 2019), all the “cloudy” 500 m pixels (those 
with>5% of the 30 m pixels flagged as “cloud” or “cloud shadow”) are 
eliminated, to reduce potential errors. In total 353 scenes were selected: 
201 scenes from 2013 to 2014, used for training the empirical rela-
tionship, and 152 scenes from 2015, used for validation (Fig. 1). 

2.3. Auxiliary data 

The land cover type data were obtained from the MODIS Land Cover 
Product (MCD12Q1) Collection 6. We use the International Geosphere- 
Biosphere Programme (IGBP) classification schemes. The spatial distri-
bution of the major land-cover types of the TP is shown in Fig. 2. At the 
pixel scale, the spectral characteristics of snow may be weakened due to 
being mixed with the characteristics of other land-cover types. In 
particular, the dense canopy of forests may obstruct snow signals, and 
errors in FSC estimation have been found to be significantly correlated 
with vegetation fraction (Rittger et al., 2013). Since the normalized 
difference vegetation index (NDVI) is closely related to vegetation 
fraction (Baret et al., 1995), NDVI is also derived from the Landsat-8 OLI 
data, to evaluate the effects of land-cover types. For each 30-m Landsat- 
8 pixel, NDVI is initially calculated from equation (3): 

NDVIL8 30m = (B5L8 30m − B4L8 30m)/(B5L8 30m +B4L8 30m) (3) 

where B5L8_30m is Landsat-8 OLI Band 5 (near-infrared) and B4L8_30m 
is the Band 4 (red). The NDVI at MODIS scale is then calculated by 
averaging all the NDVIL8_30m pixels contained in the corresponding 
MODIS pixel. Elevation information is obtained from Version 3 of the 
Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) Global Digital Elevation Model (GDEM) data, which has a 
similar spatial resolution (~30 m) to Landsat 8 OLI. The elevation at the 
MODIS scale is then calculated by aggregating the original 30-m DEM 
pixels contained in the corresponding MODIS pixel. Finally, slope and 
aspect are calculated based on the aggregated elevation data at the 
MODIS scale. 

3. Methodology 

Fig. 3 presents an overview of the input data, the processes for using 
MODIS NDSI and upscaled Landsat-8 NDSI for establishing different FSC 
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and BSC estimation methods, and how the scale-influence analysis is 
conducted. Firstly, a total of 353 Landsat-8 scenes with 30 m resolution 
are processed to 500-m FSC pixels and subsequently used as “truth” for 
training and validating the BSC and FSC estimates derived from MODIS 
NDSI. The Landsat-8 images are also converted to 500-m NDSI pixels for 
constructing the Landsat-8 based BSC and FSC schemes which are then 
compared with the MODIS-based schemes for analyzing the scaling ef-
fects. The following sections describe these processes in detail. 

3.1. FSC estimation 

3.1.1. Using MODIS NDSI for FSC estimation 
Constructing a linear regression between the 500-m NDSIMOD and 

the FSC derived from 30-m Landsat pixels within the corresponding 

MODIS pixel is a popular way to estimate FSC, which was also used for 
the MODIS snow-cover product Version 5 (Riggs et al., 2006). According 
to Salomonson and Appel (2006), only MODIS pixels with a true FSC in 
the range of 10 – 95% are considered for building the regression rela-
tionship to reduce the negative effects of multiple samples clustering at 
very low or very high FSC. All the 353 selected Landsat 8 scenes have at 
least 500 corresponding 500-m MODIS pixels meeting the criteria. More 
detailed information is shown in Fig. 1. 

According to Salomonson and Appel (2004), there are generally two 
ways of building such an empirical relationship: “model MA”, in which 
NDSIMOD is taken as the independent variable and FSC as the dependent 
variable; and “model MB” where FSC is the independent variable and 
NDSIMOD is the response. It is clear that the equation for MB has to be 
inverted algebraically to estimate FSC from NDSI, but this approach is 

Fig. 1. Map of the study area (a), and the location and sample number of MODIS-scale pixels with “observed” snow cover fraction between 0.1 and 0.95 for the 201 
training Landsat-8 scenes (b) and the 152 validation Landsat-8 scenes (c). The elevation data displayed in (a) are from the Shuttle Radar Topography Mission 
(SRTM) dataset. 
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considered to be better than MA because of the larger variance and er-
rors in NDSI compared to FSC (Salomonson and Appel, 2004, 2006). For 
each Landsat-8 training scene, both models, MA and MB, are built. Both 
models have 201 sets of coefficients derived from the 201 training 
scenes. Using samples from all the 201 training scenes, two average (or 
“universal”) linear relationships are established, called “model MAU” 
and “model MBU”. The reference linear regression model, which was 
used for producing the global MODIS FSC developed by Salomonson and 
Appel (2006), is also tested here for comparison, and named “model 
MR”. Considering the meaningful ranges of NDSI and FSC, all estimated 
FSC < 0 or those with NDSI ≤ 0 are set to 0% FSC, and those with values 
>1 are set to 100% FSC. 

In total, five types of model (MA, MB, MAU, MBU and MR) are built 
based on NDSIMOD. Of these models, the one with the highest validation 
accuracy is considered to be the best model that can be achieved through 
a linear regression between NDSIMOD and FSC. 

3.1.2. Upscaling Landsat 8 NDSI to MODIS scale for FSC estimation 
To further explore the effects of scaling on the accuracy of the linear 

regression models based on NDSI, two types of upscaled Landsat-8 NDSI 
are constructed: NDSIL8M, a mean NDSI, calculated for each MODIS pixel 
by aggregating all the corresponding Landsat-8 NDSI (i.e., NDSIL8_30m) 
values; and NDSIL8I, an NDSI calculation made using equation (4), 

NDSIL8I = (B3L8 500m − B6L8 500m)/(B3L8 500m +B6L8 500m) (4)  

where the MODIS-scale B3 (B3L8_500m) and B6 (B6L8_500m) are initially 
calculated by averaging the TOA reflectance of the 30 m Landsat 
B3L8_30m and B6L8_30m pixels contained in the corresponding MODIS 
pixel, respectively. For NDSIL8M, four types of model “model LAM”, 
“model LBM”, “model LAMU” and “model LBMU” are constructed by 
replacing NDSIMOD with NDSIL8M in models MA, MB, MAU and MBU. 
Similarly, the other four types of model: “model LAI”, “model LBI”, 
“model LAIU” and “model LBIU” are constructed with NDSIL8I as the 
input. A comparison of the NDSIL8M-based and NDSIL8I-based models 
illustrates the effects of the different methods of NDSI calculation on the 
upscaling. 

3.1.3. Evaluation of the accuracy of FSC estimation 
Previous studies have shown that the unbalanced distribution of 

samples (e.g. the huge number of 0% FSC pixels) may inflate the eval-
uated accuracy (Zhang et al., 2019b). Two validation conditions are thus 
considered in this study: 1) the “all-snow condition”, in which all the 
samples covering the entire range of FSC between 0 and 1 are used for 
validation; 2) the “patchy-snow condition”, in which only FSC samples 
between 0.1 and 0.95 are used for validation. To evaluate the accuracy 
of the FSC estimates, both RMSD and R are calculated by comparing the 
estimated and “true” FSC values. In accordance with previous FSC 

Fig. 2. The spatial distribution (a) and percentage (b) of major land cover types on the Tibetan Plateau. The percentage of major land-cover types for the samples 
used in this study including those under all-snow and patchy-snow conditions, are shown in panel (b). Note: some types have been combined for brevity, e.g. “Woody 
Savannas” and “Savannas” are combined as “Savannas”. The land-cover types are derived from MODIS Land Cover Type Product (MCD12Q1) Collection 6. 
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estimates (Salomonson and Appel, 2004; Shreve et al., 2009), RMSD is 
selected as the primary evaluation metric for the deterministic com-
parison of the different models. The model with the highest accuracy, 
out of models MA, MB, MAU, MBU and MR, is selected as the best linear 
regression model for estimating FSC based on MODIS NDSI. The same 
comparison is conducted for the models based on upscaled Landsat 
NDSI, i.e. models LA, LB, LAIU, LBIU, LAMU and LBMU. 

3.1.4. Analysis of scaling effects on FSC estimation 
NDSIL8M and NDSIL8I cannot be directly compared with NDSIMOD 

because they involve different band locations and sensors, but their 
performances in estimating FSC are comparable, because they both 
make the same assumption of a strong linear relationship between FSC 
and NDSI. The spectral radiance is generally linear when aggregated 
from relatively high (30 m) to relatively low (e.g. 1 km) resolutions 
(Liang, 2000) and NDSI is calculated using simple band mathematics. 
Therefore, we can assume that, if the scaling effects on the FSC esti-
mation using MODIS NDSI are small, the models using NDSIMOD should 
have a similar accuracy to those using NDSIL8I or NDSIL8M, although, as 
discussed below, the upscaling processes for constructing NDSIL8M or 
NDSIL8I may also be affected to some degree by pixel heterogeneity. 

In mountainous areas, land-surface radiance is dependent on 
topography and land cover (Meyer et al., 1993), and so three factors, 
aspect, slope and NDVI, have been selected to describe the varying 
topography and land-cover conditions (Czyzowska-Wisniewski et al., 
2015; Hou et al., 2020; Liang et al., 2017). If there is a significant dif-
ference in accuracy between the models based on NDSIMOD and those 
based on NDSIL8I or NDSIL8M, there may be strong scaling effects pre-
sent. Such scale influence can be analyzed by investigating how the 
accuracy of the NDSIMOD-based models, and its differences compared to 

models using NDSIL8I or NDSIL8M, are affected by these three factors. 
The analysis of variance (ANOVA) is a common technique used for 

calculating the contributions of different factors (Zhang et al., 2019a), 
and is used here to quantify the effects of the three scaling factors. Since 
aspect generally has eight classifications, slopes and NDVI have also 
been classified into eight groups according to their respective histogram 
distributions. The eight slope groups are 0–2, 2–4, 4–6, 6–8, 8–10, 
10–12, 12–14 and >14 degrees. The eight NDVI groups are <0, 0–0.015, 
0.015–0.03, 0.03–0.045, 0.045–0.06, 0.06–0.075, 0.075–0.09 and 
>0.09. Thus, the samples are divided into a total of 512 (=8 × 8 × 8) 
groups representing different aspect, slope and NDVI conditions. For 
each group, the R between the estimated and “true” FSC is calculated. 
The variance of the estimation accuracy (i.e. R) can thus be partitioned 
into different components related to different factors. The interactions 
between different factors are also considered in ANOVA. The contribu-
tions of individual factors, or their interaction terms, are calculated 
based on their sum of squares. It should be noted that the use of R rather 
than RMSD as the accuracy measurement for ANOVA, is mainly because 
RMSD is very susceptible to the magnitude of FSC and, as the differences 
in the FSC of different groups can be very large, use of RMSD could lead 
to unreliable results. 

3.2. BSC estimation 

3.2.1. Using MODIS NDSI and upscaled Landsat-8 NDSI for BSC 
estimation 

MODIS binary snow-cover data were previously produced using the 
NDSI threshold of 0.4. All the 500 m “true” FSC pixels are reclassified as 
either snow (FSC > 50%) or non-snow (FSC ≤ 50%) pixels. Previous 
studies have shown that 0.4 may not be the optimal NDSI threshold for 

Fig. 3. Flow chart illustrating the processes for establishing new fractional (FSC) and binary (BSC) snow-cover estimation methods based on MODIS NDSI and 
upscaled Landsat-8 NDSI, and how the scaling effects are analyzed. 
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many areas, including the TP (Zhang et al., 2020, 2019b). Two types of 
NDSI threshold are considered here: 1) a locally optimal NDSI threshold, 
for which a sensitivity test of different NDSI thresholds (ranging from 
0.1 to 0.7) on BSC estimation accuracy is implemented to find an 
optimal NDSI threshold for each training scene, following Zhang et al. 
(2019b); 2) a region-wide optimal NDSI threshold, for which a similar 
sensitivity test, but based on samples from all 201 training scenes, is 
conducted, with the NDSI threshold that achieves the highest average 
accuracy selected. Both types of NDSI threshold are calculated for 
NDSIMOD, NDSIL8I and NDSIL8M, respectively. 

3.2.2. Evaluation of BSC estimation accuracy 
To evaluate BSC estimation accuracy, firstly a confusion matrix is 

defined: 1) true FSC > 0.5 and satellite predicts snow-covered (i.e. NDSI 
> NDSI threshold), defined as “TP” (true positive); 2) true FSC > 0.5 
while satellite predicts snow-free (i.e. NDSI ≤ NDSI threshold), defined 
as “FN” (false negative); 3) true FSC ≤ 0.5 while satellite predicts snow- 
covered, defined as “FP” (false positive); 4) true FSC ≤ 0.5 and satellite 
predicts snow-free, defined as “TN” (true negative). Four types of eval-
uation metrics consisting of Probability of Detection (POD), Precision 
(PC), F-score (FS) and Cohen’s Kappa (CK) are then calculated using 
equations (5) – (8), respectively. 

POD =
TP

TP + FN
(5)  

PC =
TP

TP + FP
(6)  

FS =
2 × POD × PC

POD + PC
(7)  

CK =
GA − Pr(e)
1 − Pr(e)

(8)  

where GA and Pr(e) are calculated from Equations (9) – (11). 

Pr(e) =
(

TP + FP
Total

×
TP + FN

Total

)

+

(
TN + FP

Total
×

TN + FN
Total

)

(9)  

GA =
TP + TN

Total
(10)  

Total = TP+FN +FP+TN (11) 

CK is selected as the primary evaluation metric in deterministic 
comparisons such as selecting the optimal NDSI thresholds, following 
Zhang et al. (2019b). FS, POD and PC are calculated to enable better 
understanding of the error sources. 

3.2.3. Analysis of scaling effects on BSC estimation 
The analysis of scaling effects on BSC estimation is similar to the 

procedure described in Section 3.1.4. Firstly, the accuracy of the 
methods using MODIS NDSI (i.e. NDSIMOD) and upscaled Landsat-8 
NDSI (i.e. NDSIL8I and NDSIL8M) is compared. If, for example, using 
NDSIMOD shows significantly lower accuracy than using NDSIL8I or 
NDSIL8M, then there could be large scaling effects on the BSC estimates 
based on NDSIMOD. The effects of the three scaling factors, aspect, slope 
and NDVI are then analyzed as follows. The same 512 sample groups of 
different aspect, slope and NDVI conditions as used for FSC estimation 
are used. For each group, the estimation accuracy (CK) is calculated, 
based on the estimated and “true” BSC. The effects of different scaling 
factors are further quantified based on ANOVA of the estimation accu-
racy using MODIS NDSI and upscaled Landsat-8 NDSI or their accuracy 
differences. 

4. Results and discussion 

4.1. The performance of FSC estimation models based on MODIS NDSI 

For all the 201 training scenes, the RMSD of model MA is always 
smaller than that of model MR, as shown in Fig. 4a. The average RMSDs 
of the model MA is 0.18 compared to 0.24 for model MR. This result 
confirms that a local empirical relationship can be more suitable for a 
specific region than the global reference equation. However, an indi-
vidual scene-based model, which has relatively good accuracy with the 
training data, may not be suitable for the whole TP. Therefore, the best 
performing of the 201 MA models, referred to as “model MAT”, is 
determined by comparing their validation accuracy in conditions of both 
all-snow and patchy-snow. Similarly, the best model MB is also selected, 
and referred to as “model MBT”. Although model MB was expected to be 
better than MA, both models MA and MAT show generally better per-
formance than models MB and MBT in the training and validation 
scenes, respectively (Fig. 4). Models MAT and MR show almost equal 
accuracy in the validation under all-snow condition. However, the 
validation accuracy of MAT is clearly better than that of MR under 
patchy-snow conditions. Although models MAU and MBU both consider 
all the training samples, possibly making them more “universal” (Salo-
monson and Appel, 2004), their validation accuracy is significantly 
lower than MAT under either all-snow or patchy-snow conditions 
(Fig. 4b). Thus, model MAT is considered to be the best out of all the FSC 
estimation models based on NDSIMOD used here. 

The validation accuracy of MAT under all-snow conditions is rela-
tively good, with an RMSD as low as ~0.09, even lower than the values 
of ~0.1 reported by Salomonson and Appel (2006) and Salomonson and 
Appel (2004). However, this high validation accuracy may be mainly 
because of the very unbalanced distribution of validation data with 
snow-free pixels (i.e. FSC = 0%) accounting for ~73% of the data. MAT 
shows much lower accuracy (RMSD: 0.22) under patchy-snow condi-
tions. This finding may also explain why some local studies found 
MODIS fractional snow-cover data was accurate in the Heihe river basin 
of the northeastern TP, with relatively low RMSD values of 0.09 – 0.11 
(Hou and Huang, 2014), while others, such as Hou et al. (2020) and 
Tang et al. (2013b), reported large RMSD values greater than 0.2. As the 
validation results under patchy-snow conditions are clearly more reli-
able, the ANOVA is conducted under these conditions. 

4.2. Scaling effects on FSC estimation 

The comparison between models based on upscaled Landsat-8 NDSI 
shows that the “universal” models that use all the training samples (i.e. 
models LAIU, LBIU, LAMU and LBMU) have slightly better accuracy 
than the models which use samples from individual scenes (i.e. models 
LAI, LBI, LAM and LBM), although the results are not shown here. Fig. 5a 
shows that for all the training Landsat-8 scenes, the RMSDs of models 
LAI (mean RMSD: 0.1) and LAM (mean RMSD: 0.09) are clearly lower 
than that of model MA (mean RMSD: 0.18). The validation results for 
models LAIU, LBIU, LAMU and LBMU also show significantly better 
accuracy than model MAT under both all-snow and patchy-snow con-
ditions (Fig. 5b). The large difference in accuracy between models based 
on NDSIMOD and those based on NDSIL8I and NDSIL8M indicates there 
may be strong scaling effects on FSC estimation using MODIS NDSI. 

Although NDSIL8I and NDSIL8M are calculated from NDSIL8_30m in two 
different ways, their performances in the FSC estimation are quite 
similar, with little difference in accuracy, as shown in Fig. 5. As NDSIL8I 
is constructed using a method closer to that used for NDSIMOD, the 
ANOVA is conducted based on results from MAT and LBIU. The ANOVA 
test shows that, although the single contribution of aspect, slope or NDVI 
to the variances of the accuracy of model MAT (i.e. RMAT) is not very 
large, their combined contributions (including the interaction terms) 
can be as large as 61%, indicating a dominant scaling effect (Fig. 6a). 
Although it seems that the scale issue also has effects on FSC estimation 
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using NDSIL8I, the combined effects of aspect, slope, NDVI and their 
interactions on the accuracy of model LBIU (i.e. RLBIU) are much smaller, 
making a total contribution of 41%. Thus, a comparison of Fig. 6a and 6b 
shows that there are enhanced scaling effects on FSC estimation based 
on NDSIMOD. It is also interesting that NDVI is a major scaling factor of 
the variance of RLBIU (Fig. 6b), whereas aspect and slope are obviously 
more important factors of the variance of RMAT. Thus, the enhanced 
scaling effects on MODIS NDSI may be mainly caused by the complex 
topography rather than land cover heterogeneity. The large difference in 
FSC estimations between NDSIMOD and NDSIL8I also indicates that 
upscaling Landsat-8 NDSI to 500-m cannot mimic the true MODIS NDSI 
well. The linear aggregation process of Landsat-8 NDSI may not be able 
to reflect the complex effects of terrains on the possibly non-linearly 
scaling behavior of NDSI and the linear relationship between NDSI 
and FSC may be degraded for MODIS due to such scaling effects. For 
example, the illumination conditions within a MOIDS pixel may be 
greatly affected by aspect and slope which could further influence the 
spectral radiance (Crawford et al., 2013; Mishra et al., 2009). We further 
conduct an ANOVA of the accuracy difference between the two models 
(i.e. RLBIU minus RMAT). As mentioned before, RLBIU is always better than 
RMAT, and the ANOVA result shows that the superiority of RLBIU is 
strongly controlled by the two terrain factors of aspect and slope 
(Fig. 6c). This result further demonstrates that complex terrain is the 
main factor lowering the skill of MODIS NDSI for snow-cover estimation 
on the TP. 

4.3. Optimal NDSI threshold for binary snow cover (FSC ≥ 50%) 
estimation 

Using locally optimal NDSI thresholds and the same training samples 
as those for FSC estimation, both NDSIL8I (mean CK: 0.89) and NDSIL8M 
(mean CK: 0.91) show much higher accuracy than NDSIMOD (mean CK: 
0.55) (Fig. 7a). The accuracy of BSC estimation is also strongly affected 
by the unbalanced distribution of samples. When all the samples (0 ≤
FSC ≤ 1) of the 201 training scenes are used, the spatially averaged 
values of CK for NDSIMOD, NDSIL8M and NDSIL8I are greatly increased to 
0.88, 0.98 and 0.98, respectively. Fig. 7b illustrates the sensitivity tests 
of the averaged BSC estimation accuracy on a region-wide NDSI 
threshold ranging from 0.1 to 0.7. The maximum accuracy corresponds 
to NDSI thresholds (i.e. region-wide optimal NDSI thresholds) of 0.29, 
0.38 and 0.39 for NDSIMOD, NDSIL8M and NDSIL8I, respectively. The 
region-wide optimal thresholds are further used in validation and the 
results shown in Fig. 7c show that the spatially averaged values of CK for 
NDSIMOD, NDSIL8M and NDSIL8I are 0.49, 0.90 and 0.88 under patchy- 
snow conditions, and they are greatly increased to 0.85, 0.98, 0.98, 
under all-snow conditions. The spatially averaged values of FS for 
NDSIMOD, NDSIL8M and NDSIL8I vary similarly, with values of 0.63, 0.93 
and 0.91, respectively, under patchy-snow conditions, and 0.87, 0.98, 
0.98 under all-snow conditions. The much lower BSC estimation accu-
racy of NDSIMOD, compared with that of NDSIL8I or NDSIL8M, in both 
training and validation situations, indicates that there are also possibly 
large scaling effects on the BSC estimates based on MODIS NDSI. 

Similarly to the case for FSC estimation, the accuracy of BSC esti-
mation using NDSIL8I is very close to that achieved when using NDSIL8M. 

Fig. 4. Accuracy comparison of models based on MODIS NDSI (i.e. NDSIMOD). The comparisons of RMSD for models MA, MR, and MB are shown for each of the 201 
training Landsat scenes separately (a). The accuracy comparison between models of the best MA, the best MB, MR, MAU and MBU is plotted using RMSD calculated 
using samples from the 152 validation scenes (b). Note: the locations of some scenes have been adjusted slightly to prevent overlapping in panel (a). MAT: the best 
model among the 201 MA models; MBT: the best model among the 201 MB models. 
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The results of NDSIMOD and NDSIL8I are thus used in the ANOVA for BSC 
estimation. The ANOVA of scaling effects is conducted for patchy-snow 
conditions because of the negative effects of the unbalanced samples 
distribution under all-snow conditions. The results are highly consistent 
with those of the FSC estimation. The total contribution of the three 
scaling factors, aspect, slope, NDVI and their interaction terms, to the 
variances of BSC estimation accuracy using NDSIMOD is ~61% (Fig. 8a), 
very close to the values for FSC estimation (Fig. 6a), although the effect 
of slope seems to be larger for BSC estimation. The scaling effects on 
NDSIL8I-based BSC estimation are smaller than those on NDSIL8I-based 
FSC estimation, with the total contribution of the three scaling factors 
being only ~33% (Fig. 8b). Aspect and slope are the two major factors of 
the enhanced scaling effects on BSC estimation using NDSIMOD, with 
their combined contribution to the variances of the accuracy differences 
between the two methods (i.e. CKL8I minus CKMOD) being ~50% 
(Fig. 8c). 

4.4. Implications of the use of the MODIS NDSI snow cover product for 
FSC and BSC estimation on the Tibetan Plateau 

The unbalanced distribution of samples (i.e. most samples having 0% 
FSC) under all-snow conditions means that the accuracy of FSC esti-
mation is overestimated by using a linear regression model based on 
MODIS NDSI. Under patchy-snow conditions (i.e. 0.1 ≤ FSC ≤ 0.95) the 
accuracy is much lower. Even using local regression models, the aver-
aged RMSD across the 201 training scenes is still as high as 0.18. It 
should be noted that model MR, which was used in the previous version 
of the MODIS snow cover product, shows even lower accuracy under 
patchy-snow conditions with an averaged RMSD of 0.24. Our study 

proposes a new regression model (i.e. model MAT) based on NDSIMOD 
selected from the candidate models derived from 201 Landsat-8 scenes. 
However, the accuracy improvement when using this new model, is very 
limited, with the validation RMSD still as high as 0.22. In contrast, the 
models using upscaled Landsat-8 NDSI perform much better, with an 
averaged validation RMSD of 0.11–0.12. Thus, the ability of MODIS 
NDSI to estimate FSC seems to be weakened and there could be larger 
uncertainties than expected when using FSC values estimated from 
MODIS NDSI on the TP. The ANOVA results indicate that more impor-
tance should be attached to terrain factors, including aspect and slope, in 
future FSC estimations. Considering that the linearity between FSC and 
MODIS NDSI may be greatly degraded by scaling effects, more compli-
cated methods that can incorporate more spectral bands and factors such 
as MODSCAG (MODIS Snow-Covered Area and Grain size) (Painter 
et al., 2009), artificial neural networks (Hou and Huang, 2014; Hou 
et al., 2020), multivariate adaptive regression splines (Kuter et al., 2018) 
and random forests (Liu et al., 2020), should be used to create more 
accurate FSC products for the TP. 

For BSC estimation, we find that 0.29 could be the optimal NDSI 
threshold for BSC mapping on the TP using MODIS NDSI data, a value 
which seems to be in conflict with some previous studies, which suggest, 
based on daily snow depth observations, a NDSI threshold of 0.1 for use 
in China, including the TP (Zhang et al., 2020, 2019b). It should be 
noted that point observations of snow depth may not mean that the 
corresponding MODIS pixel has a value of FSC > 50%. In addition to the 
obviously different type of data used as “observations”, another 
important reason for the discrepancy could be that the NDSI threshold of 
0.1 may be more accurate for describing whether snow is present within 
a MODIS pixel, as indicated by (Riggs et al., 2017), rather than whether 

Fig. 5. Accuracy comparison between MODIS-based and upscaled Landsat-based FSC estimation models. The comparisons of RMSD for models MA, LAM, and LAI are 
shown for each of the 201 training Landsat scenes separately (a). The accuracy comparison between the MAT, LAMU, LBMU, LAIU and LBIU models is plotted using 
RMSD calculated using samples from the 152 validation scenes (b). Note: the locations of some scenes have been adjusted slightly to prevent overlapping in panel (a). 
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snow covers more than 50% of the pixel. Therefore, we further tested 
more FSC situations of snow detection with the lower limit for the FSC of 
a snow-covered pixel varying from 0.1 to 0.5. For each FSC situation, the 
optimal NDSI threshold is selected as the one with the highest averaged 
CK. To ensure that the results of these tests are comparable with pre-
vious studies, all-snow conditions are used. The results, shown in Fig. 9, 
show that the optimal NDSI threshold decreases from 0.29 to 0.1, as the 
lower limit of FSC decreases from 50% to 5%. It is interesting to note 
that the BSC estimation accuracy also decreases as the lower limit of FSC 
decreases. This result indicates that MODIS NDSI snow-cover data are 
more accurate for detecting snow pixels with FSC > 50%, possibly 
because larger scaling effects may exist in pixels with relatively low FSC. 
Such enhanced scaling effects, mainly caused by terrain factors, are also 
observed when estimating BSC using MODIS NDSI. Under fragmented or 
patchy-snow conditions, both omission and commission errors of BSC 
detection using MODIS NDSI are large, with the averaged POD and PC as 
low as 0.65 and 0.68, respectively, resulting in relatively low values of 
CK (0.49) and FS (0.63). Thus, special attention is required when 
extracting the boundaries of snow-covered areas, such as the snow line 
or glacier extent, based on MODIS snow-cover data, and more advanced 
methods, that can better consider scaling factors, should be developed 
for BSC estimation on the TP. In addition, previous studies which use 0.4 
as the NDSI threshold for snow mapping, may benefit from our finding 
about the new optimal NDSI threshold of 0.29, considering that, under 
patchy-snow conditions, the accuracy of using 0.29 as the NDSI 
threshold (mean CK: 0.49) is clearly better than that of using 0.4 (mean 
CK: 0.40) when the POD as low as 0.46 indicates a lot of snow omission 
errors. It should also be noted that one can easily calculate the new FSC 
and BSC data according to the new regression equation and new 

threshold using the original MODIS NDSI data. This may be one reason 
why MODIS now only provides NDSI data (Riggs et al., 2017). 

4.5. Uncertainties and limitations 

The “true” FSC data are derived from Landsat-8 OLI scenes following 
the SNOMAP algorithm (Hall et al., 1995) that uses 0.4 as the NDSI 
threshold. However, Härer et al. (2018) found that, in some cases, a 
fixed NDSI threshold of 0.4 could result in relative errors of about 24% 
in FSC estimation. They suggest considering seasonal variation of NDSI 
thresholds, but the camera-based calibration method they use will be 
hard to apply on the TP, where regular observation stations are very 
sparse. Even though MODIS TERRA and Landsat-8 have similar overpass 
times, the differences in acquisition time between them could also affect 
the results because snow depths on the TP are relatively small and snow 
may melt or sublimate during the time interval (Zhang et al., 2020). To 
solve this problem, Hou et al. (2020) suggests using image pairs with the 
same acquisition time for training the FSC estimation model. It is 
assumed that in a reliable pair of Landsat-MODIS scenes, there should be 
a high degree of consistency between NDSIL8I_500m and NDSIMOD. We 
thus implemented relatively strict criteria for increasing the reliability of 
the reference scenes: the only scenes selected for training or validation 
in this study are those with a correlation coefficient between NDSI-
L8I_500m and NDSIMOD > 0.7. Due to the very unbalanced composition of 
land cover types (Fig. 2), the land cover effects considered in ANOVA are 
based on NDVI rather than land cover types. It should be noted that 
NDVI may be more accurate in representing the effects of vegetation 
rather than those of land-cover types. This problem could be partially 
solved by collecting more samples from different land-cover types in 

Fig. 6. The ANOVA results showing the contri-
butions of the three scaling factors (i.e. aspect, 
slope and NDVI) and their interaction terms to 
total variances of the accuracy for the model 
using MODIS NDSI (i.e. model MAT) (a), the 
model using upscaled Landsat-8 NDSI (i.e. model 
LBIU) (b) and the accuracy differences between 
the two models (c). RMAT is the correlation coef-
ficient between the true FSC and the value esti-
mated from model MAT, RLBIU is the correlation 
coefficient between the true FSC and the value 
estimated from model LBIU; Asp is aspect; Slp is 
slope; *** indicates P-value < 0.001; * indicates 
P-value < 0.05.   
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future. The results of ANOVA show that NDVI has limited effects on the 
accuracy of FSC and BSC estimation using MODIS NDSI. However, as 
shown in Fig. 10, there are truly significant accuracy differences be-
tween different land cover groups. For both FSC and BSC estimation, the 
accuracy for forest and savanna is significantly lower than for barren 
land and grassland. It should be noted that forest and savanna account 
for only about 5% and 4% of the area of the whole plateau, respectively, 
and the samples we used generally have a composition of major land 
cover types which is consistent with the TP as a whole (Fig. 2b). It should 
also be noted that, according to Sulla-Menashe and Friedl (2018), the 
pixels labeled here as savanna, as determined from the MODIS land- 
cover data, are more likely to be “sparse forest” or unidentified grass-
lands, as savanna is usually only found in tropical regions. The relatively 

weak effects of NDVI are thus attributed to the much smaller portion of 
densely vegetated areas. 

Though a fixed NDSI threshold of 0.29 is recommended as the 
optimal one in the present study, the optimal NDSI threshold may, in 
fact, vary with slope and aspect. All the samples are thus divided into 64 
(=8 × 8) groups by considering the eight slope conditions and eight 
types of aspect. For each group, a sensitivity test of different NDSI 
thresholds (ranging from 0.1 to 0.7) on BSC estimation accuracy, which 
is the same as that in Section 3.2.1, is conducted to determine an optimal 
NDSI threshold. In total, 64 slope/aspect specific optimal NDSI thresh-
olds are obtained, as shown in Fig. 10c. NDVI is not considered here, 
mainly because the ANOVA tests show that NDVI is not a key factor for 
BSC estimation on the TP. It is clear that the optimal NDSI threshold 

Fig. 7. Accuracy comparison of binary snow cover (FSC ≥ 50%) detection between NDSIMOD, NDSIL8M and NDSIL8I. (a) Accuracy comparison of locally optimal NDSI 
thresholds based on samples from each training Landsat-8 scene. (b) Sensitivity tests of binary snow-cover estimation accuracy on a region-wide NDSI threshold 
ranging from 0.1 to 0.7 under all-snow (left) and patchy-snow (right) conditions. (c) Accuracy comparison between NDSIMOD, NDSIL8M and NDSIL8I using the NDSI 
thresholds of 0.29, 0.38 and 0.39, respectively, based on samples from the 152 validation Landsat-8 scenes. MOD: NDSIMOD; L8M: NDSIL8M; L8I: NDSIL8I. 
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generally increases with slope and decreases as the aspect varies from 
southeast to northwest. Steeper slopes tend to produce larger commis-
sion errors of snow detection. Thus, for pixels with a steep slope, the 
NDSI threshold tends to be high for reducing the snow commission er-
rors. In general, we also find fewer snow omission errors for the more 
southeastward aspects than for the more northwestward aspects, 
possibly due to differences in illumination conditions. Thus, a relatively 

low NDSI threshold is required to reduce the omission errors in the as-
pects that are more northwestward. 

There are some limitations in this study. First, due to the high pro-
portion of cloud cover, there are no training or validation Landsat-8 
scenes in the southeastern part of the TP, although the scenes used 
covered most parts of the TP (Fig. 1). Camera-based snow-cover maps 
(Härer et al., 2018) or images from unmanned aerial vehicles (Liang 
et al., 2017; Liu et al., 2020) are possible solutions for relieving this 
problem in future studies. Second, the effects of forest canopy may not 
be sufficiently considered. Many studies have found that MODIS snow- 
cover data may largely underestimate FSC for heavily forested areas 
(Klein et al., 1998; Liu et al., 2020; Masson et al., 2018; Rittger et al., 
2013; Wang et al., 2018). Such a problem can be alleviated by spectral 
mixture analysis (Rittger et al., 2013), considering view angle effects 
(Xin et al., 2012), the multi-index technique (Wang et al., 2018) or by 
incorporating more bands and factors using machine learning (Liu et al., 
2020). Third, in some cases, it can be difficult to distinguish cloud from 
snow, when only using Landsat-8 bands, because of their similar mul-
tispectral signatures (Stillinger et al., 2019). Even if almost all the 
“cloud” and “cloud shadow” pixels have been removed, there could still 
be errors existing in the Landsat-8 cloud mask that can be corrected in 
the future. In addition, elevation is not included as an individual factor 
in ANOVA, but we find that elevation has relatively small effects on the 
accuracy of both FSC and BSC estimation using MODIS NDSI, compared 
with aspect and slope, because TP elevations are clustered in the range 
3500–5500 m. According to the histogram of distribution of elevations, 
eight elevation groups can be defined as <4000, 4000–4200, 

Fig. 8. The ANOVA results showing the contributions of the three scaling factors (i.e. aspect, slope and NDVI) and their interaction terms to total variances of the 
binary snow cover estimation accuracy under patchy-snow conditions using NDSIMOD (a), NDSIL8I (b) and the accuracy differences between them (c). CKMOD is the CK 
for NDSIMOD, CKL8I is the CK for NDSIL8I; Asp is aspect; Slp is slope; *** indicates P-value < 0.001; ** indicates P-value < 0.01; * indicates P-value < 0.05. 

Fig. 9. The optimal NDSI thresholds for detecting snow pixels with different 
lower limits of FSC (ranging from 5% to 50%) and the corresponding accuracy 
(averaged CK). 
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4200–4400, 4400–4600, 4600–4800, 4800–5000, 5000–5200 and 
>5200 m. The correlation coefficients (absolute value) between the 
accuracy of the eight elevation groups and their group-average eleva-
tions are 0.24 and 0.49 for FSC and BSC estimations, respectively, and 
both are insignificant. In contrast, the correlation coefficients between 
the accuracy of the eight slope groups and their group-average slopes are 
>0.75 for both FSC and BSC estimates. 

5. Conclusions 

This study investigates the ability of the recently released MODIS 
NDSI snow-cover data to estimate FSC and BSC on the Tibetan Plateau, 
by utilizing 353 Landsat-8 images from 2013 to 2015. The images cover 
most parts of the plateau, where snow cover plays an important role in 
both regional climate change and water security. We conduct a more 
detailed analysis of the important scaling effects on FSC and BSC esti-
mation using MODIS NDSI on the TP, than any previous studies, by using 
a much larger number of reference scenes and by including a comparison 
with upscaled Landsat-8 NDSI (from 30 m to 500 m). 

The FSC ~ NDSI empirical relationship and the NDSI threshold are 
re-established for Tibetan Plateau FSC and BSC estimates, respectively, 
based on the MODIS NDSI snow cover product V6. A new regression 

equation between FSC and MODIS NDSI (i.e. model MAT) is established 
from 201 training Landsat-8 scenes and shows better accuracy in esti-
mating FSC for the Tibetan Plateau than the previously used global 
reference equation (i.e. model MR). A region-wide optimal NDSI 
threshold for BSC estimation on the Tibetan Plateau of 0.29 is found, and 
this has better accuracy than the global reference NDSI threshold of 0.4. 

We find that there are enhanced scaling effects on both FSC and BSC 
estimates made using MODIS NDSI, as the accuracy of methods using 
MODIS NDSI are much lower than those using upscaled Landsat-8 NDSI 
in both FSC and BSC estimates. The ANOVA results, considering 512 
different aspect, slope and NDVI combinations, show that terrain factors 
(aspect and slope) cause the enhanced scaling effects. Although the ac-
curacy over forest and savanna is clearly lower than that over barren 
land and grassland in both FSC and BSC estimates, aspect and slope are 
found to be the major scaling factors for the Tibetan Plateau where 87% 
of the total area is barren or grassland. 

Our study shows that the ability to estimate FSC and BSC from 
MODIS NDSI data is significantly weakened by the complex topography 
of the Tibetan Plateau, and thus highlights the importance of developing 
more advanced models that can incorporate additional factors, 
including, at least, aspect and slope in future studies. Given the limited 
improvement in the estimation accuracy of the newly established FSC 

Fig. 10. Uncertainty due to land cover, slope and aspect. Panels (a) and (b) show accuracy comparisons, based on validation samples, for five major land-cover types 
of fractional and binary snow cover estimation, respectively. Panel (c) shows the optimal NDSI thresholds for different slopes and aspects. 
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relationship, there is a particular requirement for a more efficient 
method for future FSC estimates in practical research related to hy-
drology or climate. We also describe a framework for analyzing scaling 
effects on MODIS-based FSC or BSC estimates, which involves upscaling 
Landsat-8 NDSI data for comparison and the use of ANOVA to consider 
different topography and land cover conditions, which is not limited to 
the Tibetan Plateau and may potentially be useful in other mountainous 
regions. 

6. Data availability 

All the data used are publicly available. The MODIS NDSI snow cover 
data can be downloaded from search.earthdata.nasa.gov. The Landsat-8 
OLI TOA reflectance data can be obtained from USGS Earth Resources 
Observation and Science (EROS) Center Science Processing Architecture 
(ESPA) (espa.cr.usgs.gov). 
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