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Abstract The air temperature lapse rate (TLR) is a key parameter for interpolating air temperature data
in high mountainous regions such as the Tibetan Plateau (TP). The Moderate Resolution Imaging
Spectroradiometer (MODIS) land surface temperature (LST) has been frequently used for estimating air
temperature during the past decade, but its performance in estimating the TLR in the TP has seldom been
investigated. This study employed two methods in estimating the TLR based on MODIS LSTs compared
with the “observed” TLR derived from 86 stations across the TP. The two methods include a method for
directly computing the lapse rate from MODIS LST (DFM) and a second method for calculating the
lapse rate of estimated air temperatures based on air temperature estimation from MODIS LST (TEM). The
results show that the MODIS LST-estimated TLR for daily mean air temperature (Tmean) using both DFM
and TEM is more accurate than that for daily minimum and maximum air temperatures. When using
MODIS nighttime LSTs, both DFM and TEM show acceptable accuracies for estimating the TLR of Tmean
with averaged root-mean-square deviations of 0.21 and 0.19 °C/100 m, respectively. The spatial and
seasonal patterns of MODIS LST-estimated TLRs of Tmean from both DFM and TEM are found to be highly
consistent with the observed TLRs. This study can help alleviate the data-sparse problem in downscaling
air temperature or hydrological modeling studies in ungauged areas, especially for the western TP
where station data are extremely scarce.

1. Introduction

Air temperature is an important variable for numerous studies related to ecology (Hänninen et al., 2013;
Kollas et al., 2014), hydrology (L. Wang et al., 2016), and climate change (Cai et al., 2016). Air temperature is
a very important factor for many hydrological (Minder et al., 2010) and ecological processes (Ma et al.,
2017; Walther et al., 2002; Wu et al., 2012), particularly for those in cold regions (Kang et al., 2010). For hydro-
logical modeling in mountainous or glacierized basins, air temperature is the key input for snow or glacier
melt simulations (F. Zhang et al., 2015). Air temperature data are also the basis of global and regional warm-
ing analysis (X. Liu & Chen, 2000; Pepin et al., 2015; W. Xu & Liu, 2007). However, accurate air temperature data
are difficult to obtain due to the sparse observations in high mountainous areas, such as the Tibetan Plateau
(TP). The TP has an average altitude of ~4,000 m, and most of meteorological stations are located at low ele-
vations (<4,000 m) and in the eastern plateau. The problem of sparse air temperature data is more severe in
the western TP.

As a strong negative relation of air temperature with elevation, the air temperature lapse rate (TLR) is com-
monly used for interpolating air temperature in mountainous areas (Dobrowski et al., 2009; Dodson &
Marks, 1997; Petersen et al., 2013). Quantifying the spatial distribution of air temperature, which is commonly
described by TLR, is the basis for accurately simulating a number of hydrological and ecological processes,
including evapotranspiration (Ma et al., 2015), distinguishing snow and rainfall (Ding et al., 2014), snow
and glacier melting (T. G. Gao et al., 2015; F. Zhang et al., 2015), and tree species’ distribution (Kollas et al.,
2014) in high elevation areas. In addition, TLR is frequently used for downscaling large-scale air temperature
data sets in regional climate model (Lilleøren et al., 2013; Nilsson, 2009) and for creating grid temperature
input in hydrological models (Luo et al., 2013; Sun et al., 2013; L. Zhang et al., 2013) to investigate the regional
response to climate change. The TLR is usually estimated through linear regression based on air temperature
observations at neighboring stations (Immerzeel et al., 2014). A constant value of 0.55–0.65 °C/100 m has
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been widely used for the TLR (Arnold et al., 2006), but it could vary in both space and time (X. Li et al., 2013).
Based on station observations of air temperature, a number of studies have analyzed the spatial and seasonal
variation of TLR in the TP (Guo et al., 2016; Kattel et al., 2013, 2015, 2017; X. Li et al., 2013; Y. Li et al., 2015; Yang
et al., 2011). The TP is found to have a steeper TLR and a distinct seasonal pattern of TLR than the other parts
of China (X. Li et al., 2013; Y. Li et al., 2015). Generally, a strong seasonal pattern of TLR is found in the TP with a
shallower TLR in summer and a steeper one in winter (Kattel et al., 2015; X. Li et al., 2013; Y. Li et al., 2015). A
bimodal seasonal pattern is also found in some areas of the TP such as the Himalayan regions with two max-
ima in premonsoon and postmonsoon seasons (Kattel et al., 2013, 2017). The spatial variation of TLR over the
TP is also significant according to Guo et al. (2016) and Y. Li et al. (2015), and distinct seasonal patterns of TLR
are observed between the southern and northern slopes of the Himalayas (Kattel et al., 2015). These studies
indicate that the TLR of the TPmay only be locally accurate due to the effects of microclimates (e.g., humidity)
and terrain conditions (Kattel et al., 2013, 2015; Minder et al., 2010). The accurate estimation of the TLR largely
relies on sufficiently dense and representative observations. However, the sparse distribution of stations in
the TP, especially in high-altitude regions, may lead to a large bias (Immerzeel et al., 2014).

Remotely sensed land surface temperature (LST) can provide comprehensive temperature observations com-
pared with the limited ground stations (Z.-L. Li et al., 2013). Remotely sensed LSTs, especially the Moderate
Resolution Imaging Spectroradiometer (MODIS) LST data, are generally used for air temperature estimation
in mountainous areas around the world based on the strong correlation between the air temperature and
the LST (Benali et al., 2012; Cristobal et al., 2008; Kilibarda et al., 2014; Lin et al., 2016; C. Liu et al., 2013;
Meyer et al., 2016; Park, 2011; Peon et al., 2014; Pepin et al., 2016; Qu et al., 2011; W. Zhang et al., 2011) includ-
ing the TP (Fu et al., 2011; Y. H. Yao & Zhang, 2013; H. Zhang, Zhang, Ye, et al., 2016; H. Zhang et al., 2018; Zhu
et al., 2013). Various statistical methods including simple linear regression (Fu et al., 2011; W. Zhang et al.,
2011) and complex models such as the M5 model tree (Emamifar et al., 2013) and the random forest predict-
ing model (Y. Xu et al., 2014) have been developed for air temperature estimation. In addition to MODIS LSTs,
some auxiliary variables including elevation, latitude, longitude, and Julian day are also included in models
for more accurate estimations (Benali et al., 2012; Y. Xu et al., 2014; H. Zhang, Zhang, Ye, et al., 2016).
However, the air temperature data produced by these methods are seldom used in the estimation of the TLR.

Actually, the MODIS LST data alone have the potential to directly reflect the spatial variation of air tempera-
ture (Shamir & Georgakakos, 2014). For example, L. Wang et al. (2016) found that the modeling results were
improved using the lapse rate of the MODIS nighttime LST as the TLR in snowmelt modeling for the upper
Yellow River basin. Using subhourly Tair observations in Nevada, Mutiibwa et al. (2015) found the mean dif-
ference of the instantaneous Tair TLR and the MODIS LST TLR for nighttime is much smaller than that for day-
time. Similarly, Oyler et al. (2016) indicated that the spatial variability of MODIS daytime LST is much larger
than that of Tmax, while the spatial patterns of MODIS nighttime LST and Tmin are very similar. Thus, there
are at least twomethods that can be used to estimate the TLR, including onemethod computed directly from
MODIS LSTs (referred to as “DFM”) and a method based on air temperature estimation from MODIS LSTs in
combination with auxiliary variables (referred to as “TEM”).

Generally, three types of daily air temperatures are interpolated using the TLR, including the daily mean
(Tmean), minimum (Tmin, and maximum (Tmax) air temperatures. The TLR of Tmean is the most commonly
used. The Tmin and Tmax are also important for a number of ecological studies (Hänninen et al., 2013; Kollas
et al., 2014; Tonini et al., 2016). MODIS instruments are onboard two satellites (Terra and Aqua) with two daily
observations (daytime and nighttime) each. The MODIS nighttime LST has typically been used for the estima-
tion of Tmin and is also recommended for the estimation of Tmean (W. Zhang et al., 2011; H. Zhang, Zhang,
Ye, et al., 2016). The MODIS daytime LST has been commonly used for the estimation of Tmax (Y. Xu et al.,
2014; Zhu et al., 2013); however, the MODIS nighttime LST was found to present even better accuracy for
the estimation of Tmax (W. Zhang et al., 2011). The estimation accuracies for Tmean and Tmin are better than
that of Tmax (Benali et al., 2012; H. Zhang, Zhang, Zhang, et al., 2016). However, errors induced by undetected
clouds and the mixed-pixel effects may affect the Tair estimation accuracies (H. Zhang, Zhang, Zhang, et al.,
2016) and thus affect the TLR estimation using the TEM method.

Thus, whether the methods of DFM and TEM which both use MODIS LST data are feasible for estimating the
TLR, and how the accuracies produced by the two methods are affected by the three types of Tair and the
four MODIS pass times all remain unknown. Making clear these questions is very important and urgent for
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obtaining more spatially representative TLRs to get more accurate spa-
tial distribution of air temperature of the TP where meteorological sta-
tions are extremely sparse. In fact, more accurate estimations of the
TLR are also important for many other regions with sparse stations, such
as the Cascade Mountains in North America (Minder et al., 2010) and the
Prince of Wales Icefield in Canada (Marshall et al., 2007). To our knowl-
edge, there has been no study that focuses on estimating the TLR from
MODIS LST data by using the DFM or TEM method considering different
types of Tair (Tmean, Tmin, and Tmax) and different MODIS pass times.

In this study, three main questions are raised: (1) How accurately can the
air TLR be estimated from MODIS LSTs? (2) Which of the two methods,
DFM or TEM, is better for estimating the TLR? and (3) Among the TLRs
for Tmean, Tmin, and Tmax, which TLR is best estimated from MODIS

LSTs? To answer these questions, we employed both the DFM and TEM methods to estimate the monthly
TLRs from MODIS LST data; The accuracies of TLR estimations for Tmean, Tmin, and Tmax were then calcu-
lated and compared for each method, in comparison to the observed TLRs derived based on 86 stations
located across the TP.

2. Data Used
2.1. Meteorological Station Data

The TP covers a large area of about 3×106 km2 (G. Zhang et al., 2013). The elevation ranges from ~2,000 to
~8,800 m (Figure 1). Due to the high elevation and low temperature, snow and glaciers are widespread result-
ing in that the TP is among themost sensitive areas to climate warming (T. Yao et al., 2012). This study focuses
on the southern and eastern TP covering an area of ~1.4 ×106 km2, as most of China Meteorological
Administration (CMA) stations are located there and a reliable calculation of TLR requires sufficient neighbor-
ing stations. The latitude and longitude ranges of the stations are 27.43–38.42°N and 87.08–104.02°E, respec-
tively. The altitudes of all stations range from 1,660 to 4,800 m. Daily observations of Tmax, Tmin, Tmean,
precipitation, sunshine duration, vapor pressure, wind speed, and relative humidity of 8 years (2003–2010)
from 86 available CMA stations were used. Very few observation data during the study period are missing
with the proportion of less than 0.02%. All the air temperature observations are measured at 2 m above
ground. Elevation, altitude, and latitude/longitude information of the 86 stations were also obtained
from CMA.

2.2. MODIS LST

Daily LST data at 1-km resolution from the data sets of “MODIS/Terra Land Surface Temperature and
Emissivity Daily L3 Global 1 km Grid SIN V006” (MOD11A1) and “MODIS/Aqua Land Surface Temperature
and Emissivity Daily L3 Global 1 km Grid SIN V006” (MYD11A1) were used. They are the latest MODIS LST ver-
sions that are claimed to improve the accuracy and stability of the LST data (Wan, 2014). Both MOD11A1 and
MYD11A1 provide two data per day including a daytime and a nighttime observation. They are Terra night
(LSTTN), Terra day (LSTTD), Aqua night (LSTAN), and Aqua day (LSTAD), which are observed at 22:30, 10:30,
1:30, and 13:30 local time, respectively. Terra day and night LSTs are considered to be better proxies for esti-
mating Tmax and Tmin, respectively (Zhu et al., 2013). Besides the LST data, each data grid is accompanied
with a flag indicating the data quality. The flag values of 0–3 represent the average errors of <1, 1–2, 2–3,
and >3 K, respectively. In this study, all the data with flag value of 3 were removed to maintain quality of
the LST data being used. It should be noted that only the LST values of the MODIS pixels where the corre-
sponding CMA stations (totally 86) located were used for a fair comparison. In addition, only days with four
MODIS LST observations without cloud coverage were used to ensure a reliable comparison among them.
The geolocation error of MODIS data is archived to be ~50 m at nadir (Wolfe et al., 2002). This error is consid-
ered small, and the LST data of the MODIS pixels (1 km) where meteorological stations are located within are
often directly used for temperature comparison (Hachem et al., 2012) or for air temperature estimation stu-
dies (Benali et al., 2012; Emamifar et al., 2013; H. Zhang, Zhang, Ye, et al., 2016). In this study, we followed the
sameway. It should be noted that Terra and Aqua LST data are available from 24 February 2000 to 4 July 2002,
respectively. Thus, the study period starts from 2003 when both Terra and Aqua have full-year observations

Figure 1. Study area and locations of 86 China Meteorological
Administration stations. The altitude data were derived from the Shuttle
Radar Topography Mission at a spatial resolution of 90 m.

10.1002/2017JD028243Journal of Geophysical Research: Atmospheres

ZHANG ET AL. 3



and last to 2010 to when 8-year LST data can be acquired and are expected to be sufficient for analysis. The
study period is also consistent with the meteorological station data we obtained.

3. Methods
3.1. Estimating TLR

Three types of TLR are defined in this study, that is, (1) the estimated TLR based on the Tair data from neigh-
boring CMA stations, referred to as “TLRstation,” which is designated as the observed (or true) TLR; (2) the
MODIS LST-estimated TLR using the DFM method, referred to as “TLRDFM”; and (3) the MODIS LST-estimated
TLR using the TEM method, referred to as “TLRTEM.” Figure 2 shows the procedure for estimating, evaluating,
and analyzing the three types of TLR.

Figure 2. The flow chart describing how the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface
temperature (LST)-estimated temperature lapse rate (TLR), including TLRDFM and TLRTEM was produced, evaluated and
analyzed. “Z” is elevation, “Lat” is latitude, “Lon” is longitude, “SZ” is solar zenith, and “JD” is Julian day. CMA = China
Meteorological Administration.
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3.1.1. Estimation of TLRstation
TLRstation is calculated through a linear regression between air temperature and the elevations of selected
neighboring stations using equation (1):

Tair ¼ a� Z þ b (1)

where Tair is air temperature, Z is elevation, a and b are both regression coefficients, and the value of a is
taken as the TLRstation. The longitude or latitude is also considered for calculating the TLR in some studies
(X. Li et al., 2013; Rolland, 2003). Due to the possibly serious multicollinearity problem found in this study
as indicated in the supporting information (Text S1; Craney & Surles, 2002), only elevation is considered in
equation (1). The neighboring stations for computing TLR are usually determined by collecting available sta-
tions within a specific area such as a basin (F. Zhang et al., 2015) and a latitude-longitude divided region (X. Li
et al., 2013) or using a fixed number (e.g., 20; Y. Li et al., 2015). Considering that the TLR is locally accurate and
that the TLR is feasible only when the air temperature has a strong correlation with elevation, the neighboring
stations in this study are selected using a sensitivity test as follows: for each CMA station, the nearest neigh-
boring CMA stations were added sequentially. Once a new station was added, the TLR and the correlation
coefficient (R) and its significance level were computed. This process continued until a strong negative cor-
relation was indicated at the 0.05 significance level, and the corresponding station number was selected as
the number of neighboring stations. This process was repeated for all the 86 CMA stations. This method
has been successfully applied to determine the reasonable number of neighboring stations for four glacier
sites of the TP (H. Zhang et al., 2018). It should be noted that the daily mean air temperature data during
2003–2010 were used in this process. Lastly, local daily TLRstation values for the three types of daily Tair,
including TLRTmax, TLRTmean, and TLRTmin were computed for every CMA station.

Spatial and temporal analyses were then conducted to evaluate how reasonable the TLRstation values were.
Monthly variations of TLRstation were investigated first. It should be noted that 12 multiyear average,
monthly TLRstation values were derived from the corresponding daily TLRstation values for the study period
(2003–2010). The multiyear average, monthly TLR was used in a modeling study in southern TP and proved
to be efficient (F. Zhang et al., 2015). The spatial distribution characteristics of TLRstations were analyzed as
follows: For each station, an aggregate average TLRstation during 2003–2010 was calculated. A correlation
analysis was then conducted by examining the relationship between the TLRstations and 10 terrain/
meteorological factors using the Pearson correlation coefficient as measurement. The 10 factors are (1)
the maximum distance to the farthest neighboring station (referred to as “max distance”), (2) altitude, (3)
longitude, (4) latitude, (5) precipitation, (6) sunshine duration, (7) air temperature, (8) vapor pressure, (9)
wind speed, and (10) relative humidity.
3.1.2. Estimation of TLRDFM
Because there are four terms of MODIS LST observations per day including LSTTN, LSTTD, LSTAN, and LSTAD, the
corresponding four sets of daily TLRDFM values can be calculated using equations (2)–(5):

LSTTN ¼ a1 � Z þ b1 (2)

LSTTD ¼ a2 � Z þ b2 (3)

LSTAN ¼ a3 � Z þ b3 (4)

LSTAD ¼ a4 � Z þ b4 (5)

where a1, a2, … b1, … and b4 are regression coefficients and a1, a2, a3, and a4 are the TLRDFM values for the
four different MODIS LST terms, respectively. The neighboring stations/grids used were the same as those
used for TLRstation. It should be noted that for each MODIS LST term, the TLRDFM is directly compared with
the TLRTmax, TLRTmean, and TLRTmin values from TLRstation to evaluate its accuracy for estimations of the three
types of TLR. Similar to TLRstation, the 12multiyear average, monthly TLRDFM values were derived from the cor-
responding daily TLRDFM values for the study period (2003–2010). For example, when calculating themonthly
TLRDFM for station no. 6 with its neighboring stations of nos. 4, 5, 10, 11, 15, and 18, the LST data from the
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totally seven pixels were first used for calculating daily TLRDFM. All the available daily TLRDFM were then
aggregated to calculate the multiyear average, monthly TLRDFM values.
3.1.3. Estimation of TLRTEM
Twelve sets of Tair (four sets for each of Tmax, Tmin, and Tmean) were initially estimated based on four MODIS
LST terms using simple multiple linear regression equations (6)–(9):

Tair ¼ a1 � LSTTN þ b1 � Z þ c1 � SZ þ d1 � Lonþ e1 � Latþ f 1 � JDþ g1 (6)

Tair ¼ a2 � LSTTD þ b2 � Z þ c2 � SZþ d2 � Lonþ e2 � Latþ f 2 � JDþ g2 (7)

Tair ¼ a3 � LSTAN þ b3 � Z þ c3 � SZþ d3 � Lonþ e3 � Latþ f 3 � JDþ g3 (8)

Tair ¼ a4 � LSTAD þ b4 � Z þ c4 � SZþ d4 � Lonþ e4 � Latþ f 4 � JDþ g4 (9)

where SZ is solar zenith; Lon is longitude; Lat is latitude; JD is Julian day; and a1, a2,…, g3, and g4 are regres-
sion coefficients. The multiple linear regression is the most common method for air temperature estimation
using satellite-based LST because it has simple concept and is easy to use (Benali et al., 2012; Cristobal et al.,
2008; Y. M. Xu et al., 2012). Apart from the simple multiple linear regression model, some complex models
that are typically considered as machine-learning or data-mining methods such as the neural network
(Zhao et al., 2007), the M5 model tree (Emamifar et al., 2013), and the random forests (Y. Xu et al., 2014)
are also employed. A comparison among six types of statistical models indicates that there is little difference
between the performances of simple and complex models for most cases (H. Zhang, Zhang, Ye, et al., 2016).

Taking the Tair estimated fromMODIS LST of the target CMA station and its neighboring stations as input, the
corresponding 12 sets (4 types of MODIS LST × 3 types of Tair) of TLRTEM values were all derived using equa-
tion (1). For an independent validation, the regression equations (6)–(9) for the Tair estimation of each target
CMA station and its neighboring stations were trained using samples from all the CMA stations excluding the
target CMA station and its neighboring stations, for example, when calculating the TLRTEM for station no. 6,
the samples for building and training the regression equations for estimating Tair of station no. 6 and its
neighboring stations would not include the samples from station no. 6 and its neighboring stations (i.e., sta-
tion nos. 4, 5, 10, 11, 15, and 18).

3.2. Evaluating Methods

The performances of both the DFM and TEM methods were evaluated by comparisons between the MODIS
LST-estimated TLR (TLRDFM and TLRTEM) and TLRstation. The monthly mean TLRs during 2003–2010 were cal-
culated for each station, considering the limited number of available MODIS observations and the fact that
monthly TLRs are the most popularly used (Immerzeel et al., 2014; F. Zhang et al., 2015). This resulted in each
station having 12 monthly TLRs, which can be used for accuracy assessments. The root-mean-square devia-
tion (RMSD) and the Pearson correlation coefficient (R) were selected as performance measurements.
Comparisons were conducted for all three types of daily Tair (Tmin, Tmax, and Tmean). The type of Tair with
the highest accuracies was analyzed further. In addition, a number of potential factors, including the max dis-
tance, altitude, longitude, latitude, precipitation, sunshine duration, air temperature, vapor pressure, wind
speed, and relative humidity, were analyzed for both DFM and TEM.

3.3. Evaluating the Effects of MODIS LST-Estimated TLR on Interpolating Tair

The MODIS LST-estimated monthly TLRs based on both the DFM (TLRDFM) and the TEM (TLRTEM) methods
were used for predicting Tair at each station. The interpolation schemes are the following: all the Tair data
of neighboring stations are corrected to the height of target location using the TLR; all the corrected values
were interpolated to the target location using the IDW (inverse distance weighted) method (Jarvis & Stuart,
2001). This is a very common method for interpolating Tair based on the TLR (Stahl et al., 2006; L. Zhang
et al., 2013). The interpolated Tair values were compared to the observed Tair values, and the RMSDs
were computed as performance measurements. Further, the results from using TLRDFM and TLRTEM were
compared with the results from using TLRstation values to evaluate the effects of errors deduced by
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different methods. Lastly, uncertainties related to data availability (cloud contamination), MODIS LST
combinations and interpolation schemes were investigated.

4. Results and Discussions
4.1. TLRstation
4.1.1. Sensitivity Tests on the Number of Neighboring Stations for TLR Regression
The sensitivity tests on the number of stations for evaluating the TLR regression at representative stations
(Figure 3) showed that there were primarily three scenarios: (1) A relatively low R value (e.g., station no. 80)
or even an exceptionally low R value (e.g., station no. 16) was obtained at the beginning of the evaluation
and the R value increased gradually until reaching the 0.05 significance level; (2) a high R value was obtained
at the beginning but it did not reach the 0.05 significance level until the station number increased to a suffi-
ciently large value (e.g., station no. 66); and (3) the initial TLR already had a sufficiently high R value that
reached the 0.05 significance level, whereas the R value might decrease when the station number increased
(e.g., station no. 36). Lastly, the average number of selected neighboring stations for the TLR regression across
all 86 stations was 5 ± 2 (mean ± standard deviation) and the mean max distance was 156 ± 50 km. The max
number of selected neighboring stations is 11 with the max distance of 229 km.
4.1.2. Comparisons of TLRstation for Tmean, Tmin, and Tmax
The average TLRstations for Tmean (TLRTmean), Tmin (TLRTmin), and Tmax (TLRTmax) of all the 86 stations are
obtained, which are 0.73 ± 0.24, 0.71 ± 0.24, and 0.78 ± 0.28 °C/100 m, respectively. Previous studies show
that TLRTmax is generally larger than TLRTmin, and TLRTmean falls between them (Bolstad et al., 1998; Minder
et al., 2010; Pepin, 2001; Rolland, 2003). Our result also reveals the same relative relationship, though three

Figure 3. Sensitivity tests on the number of neighboring stations for temperature lapse rate (TLR) regression.
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of them are, in fact, very close with one another. This is consistent with
the results observed in central Himalayas (Kattel et al., 2013).
4.1.3. Monthly Variation of TLRstation
The average TLRstations of all the 86 stations show strong monthly varia-
tion that it presents a double-humped pattern for all the three types of
Tair (Figure 4). For example, TLRTmean has the first peak in March and the
second in November. This result is highly consistent with several pre-
vious studies from the TP (Kattel et al., 2013; X. Li et al., 2013; Yang
et al., 2011). The amplitude of variation is as large as about 0.2 °C/
100 m, which is also consistent with findings in the same region
(Kattel et al., 2013; X. Li et al., 2013) as well as those in regions outside
of the TP (Bolstad et al., 1998; Minder et al., 2010; Rolland, 2003). Due
to the possibly strong variation of TLR in seasonal scales, several model-
ing studies have identified that monthly TLR is more reasonable than

the annual one and improves hydrological simulation results (Immerzeel et al., 2014; F. Zhang et al., 2015).
This study thus analyzed and verified the monthly TLRs afterward.
4.1.4. Spatial Distribution of TLRstation and the Factors
Given that TLRTmean is the most commonly used parameter, only the spatial characteristics of TLRstation for
Tmean are analyzed subsequently (Figure 5). It is evident that TLRTmean has a strong spatial variation.
Previous studies (Kattel et al., 2013; X. Li et al., 2013; Marshall et al., 2007; Pepin, 2001; Yang et al., 2011) indi-
cate that the TLR may be affected by humidity, air temperature, cloud cover, wind speed, and radiative and
terrain conditions. The correlation analysis of 10 possible factors in this study indicates that TLRTmean may be
influenced by altitude, longitude, precipitation, sunshine duration, vapor pressure, and humidity in the study
area (Figure 6). Rising air tends to cool more slowly when air condensation occurs. Humidity is considered to
be the main factor affecting the variation of the TLR for this region (Kattel et al., 2013; X. Li et al., 2013; W. Liu
et al., 2013). This study confirms that TLRTmean has strongly negative correlations with relative humidity
(�0.42) and vapor pressure (�0.38), suggesting that the calculated TLRTmean values could be reasonable.
TLRTmean also shows a significantly positive correlation (0.34) with altitude. W. Liu et al. (2013) found that
lower altitudes produced larger TLRs than higher altitudes in the northern slope of the central Himalayas
and it largely depended on actual local conditions. The opposite results from those of this study can be
explained by the decreasing water vapor with increasing altitude because altitude has a significantly
negative correlation (�0.52) with vapor pressure. Clouds can reduce the TLRTmean by decreasing solar radia-
tion and cooling the land surface (Yang et al., 2011). Due to the absence of cloudiness observations, precipi-
tation and sunshine duration were used as alternatives here. Our results indicated that longer sunshine
duration and less precipitation, indicating less cloudiness, could result in higher TLRTmean values. The strongly
negative correlation (�0.39) between longitude and TLRTmean may be largely because the altitude decreases
and the air becomes moist in an eastward direction toward the edge of the TP. It may be noteworthy that
wind speed did not indicate a significant correlation with TLRTmean, but its effects might fluctuate with the
integration of other factors such as humidity and altitude, etc.

4.1.5. The Reliability of TLRstation
Previous studies (Rolland, 2003) indicate that local conditions play an
important role in the TLR. An efficient scheme was thus applied as
described in section 3.1.1, which took a full consideration of locality.
Since TLRstation is considered as the observed TLR in this study, its relia-
bility is crucial. To validate the TLRstation values, the Tmean interpolation
accuracies were computed and a sensitivity test was conducted as fol-
lows: The Tmean interpolation accuracies were initially computed based
on the original TLRTmean values for each CMA station. Then, seven
rounds of sensitivity tests were conducted for each station. For each
round another 0.1 °C/100 m was added to the original TLRTmean values
and the Tmean interpolation accuracies were calculated. After the seven
rounds of testing were completed, the TLRTmean values were set to
the original TLRTmean values and another similar seven rounds of

Figure 4. Monthly variation of average TLRstation values of all the 86 stations
for Tmean, Tmin, and Tmax at all 86 stations. TLR = temperature lapse rate.

Figure 5. Spatial distribution of TLRstation for Tmean across the Tibetan
Plateau. TLR = temperature lapse rate.
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sensitivity tests were conducted with a decrease of 0.1 °C/100 m for each round. The results are shown in
Figure S1. For the total 15 rounds, the RMSDs ranged from 1.52 to 2.90 °C and the original TLRTmeans
values indicate the highest accuracies. This further indicates that the calculation method described in
section 3.1.1 could produce reasonable TLRs that were representative of the observed TLRs in general.

4.2. MODIS LST-Estimated TLR
4.2.1. Accuracy Assessment for TLRDFM and TLRTEM
As shown in Figure 7, it is clear that the MODIS LST-estimated TLR is more accurate for Tmean than for Tmin
and Tmax in comparison to TLRstation that is designated as the observed or true TLR. This is true under all sce-
narios, including the four different MODIS LST terms and the DFM and TEM methods. The DFM method pro-
duces the best accuracies for TLRTmean, with a mean RMSD of 0.40 °C/100 m versus 0.43 and 0.44 °C/100 m for
TLRTmin and TLRTmax, respectively. Similarly, the TEM method produces the best TLRTmean estimation (mean
RMSD: 0.24 °C/100 m), followed by TLRTmin (0.26 °C/100 m) and TLRTmax (0.27 °C/100 m). Given that
TLRTmean is the most commonly used parameter, additional results are focused on TLRTmean.

The accuracies of the TLR estimation based on different MODIS LST terms are notably different (Figure 7). For
both DFM and TEM, cases using MODIS daytime LSTs indicate noticeably lower accuracies than those using
MODIS nighttime LSTs. For DFM, the averaged RMSDs for cases using MODIS daytime and nighttime LSTs are
0.60 and 0.21 °C/100 m, respectively. The accuracies are much lower than those by Mutiibwa et al. (2015),
which is mainly because their study compared the lapse rates of instantaneous Tair with those of MODIS
LSTs, whereas this study compared the daily values. For TEM, the differences of TLR estimation based
on MODIS daytime and nighttime LSTs are small with averaged RMSDs of 0.30 and 0.19 °C/100 m,

Figure 6. Correlation matrix of TLRstation for Tmean, max distance, altitude, longitude, latitude, precipitation, sunshine
duration, air temperature, vapor pressure, wind speed, and relative humidity. Significantly (at 0.01 significance level)
positive correlation values are shown in blue; significantly (at 0.01 significance level) negative correlation values are shown
in red; insignificant correlation values are filled as blank. TLR = temperature lapse rate.
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respectively. In summary, MODIS nighttime LSTs are better for TLR estimation using both DFM and TEM with
mean RMSDs of 0.21 and 0.19 °C/100 m, respectively.
4.2.2. Spatial and Temporal Uncertainties of TLRDFM and TLRTEM
The spatial distributions of the RMSDs for the MODIS LST-estimated TLR compared to the TLRstation are shown
in Figure 8. For cases based on the MODIS daytime LST (Figures 8a and 8c), the spatial patterns of accuracies
from DFM and TEM are distinct. During daytime, uncertainty mainly fluctuates with the relationship between

Figure 7. Accuracies of the directly from Moderate Resolution Imaging Spectroradiometer TLR (DFM) (a) and temperature estimation from Moderate Resolution
Imaging Spectroradiometer TLR (TEM) (b) methods for TLR estimation for Tmean, Tmin and Tmax in comparison to TLRstation. TLR = temperature lapse rate;
RMSD = root-mean-square deviation.

Figure 8. Spatial distribution of root-mean-square deviations (RMSDs) for TLRDFM from Moderate Resolution Imaging
Spectroradiometer daytime (a) and nighttime (b) land surface temperature (LST), and for TLRTEM from Moderate
Resolution Imaging Spectroradiometer daytime (c) and nighttime (d) LST compared to TLRstation. TLR = temperature
lapse rate.
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Tair and LSTs impacted by solar radiation, clouds, or hill shadows (Benali et al., 2012; W. Wang et al., 2008;
H. Zhang, Zhang, Zhang, et al., 2016). For DFM, a number of factors, including the max distance, air tempera-
ture, and wind speed, seem to have effects on the accuracies of cases based on the MODIS daytime LST
(Figure 9). Generally, solar heating warms the land surface to produce the temperature lapse between the
LST and Tair during daytime. Strong solar heating (air temperature) may introduce uncertainties to disturb
the balance between Tair and LSTs. However, strong winds can play a neutralizing role by facilitating heat
mixing to decrease the uncertainties caused by clouds or mixed-pixel effects (Hall, Box, et al., 2008). The
max distance may be related to data quality because the MODIS daytime LST becomes more spatially repre-
sentative with greater values of the max distance. Many studies reported that MODIS daytime LSTs have
more problems in pixel heterogeneity than MODIS nighttime LSTs (W. Wang et al., 2008; H. Zhang, Zhang,
Zhang, et al., 2016). Thus, the DFM method based on MODIS daytime LSTs produced very low accuracies
due to various uncertainty sources. Compared with DFM, the accuracies of cases using TEM based on
MODIS daytime LSTs are found to have no significant correlation with any of the factors (Figure 9). This
may be due to the fundamental difference between the two methods: TLRTEM is calculated from the Tair esti-
mated using MODIS LSTs, whereas TLRDFM is calculated directly from MODIS LSTs. The factors affecting the
performance of TEM may be more relevant with those affecting the accuracies of Tair estimations. Because
the MODIS daytime LST is not as strong a predictor as the MODIS nighttime LST for Tair estimation (Oyler
et al., 2016; W. Zhang et al., 2011; H. Zhang, Zhang, Ye, et al., 2016), the effects of factors affecting the Tair-
LST relationship may be smoothed by other variables, such as elevation, longitude, and Julian day.

It is obvious that the accuracies from cases using the MODIS daytime LST are clearly lower than those using
MODIS nighttime LST for almost all the 86 stations (Figure 8). Compared with MODIS daytime LSTs, the com-
plexity is largely reduced for cases based on MODIS nighttime LSTs. At night, the variation of MODIS LSTs
agrees noticeably well with that of Tair (Pepin et al., 2016). Oyler et al. (2016) also found that the spatial pat-
terns of nighttime LSTs were more similar to Tair than those of daytime LST. In this study, no meteorological
factor was found to have a substantial influence on the accuracies of cases using MODIS nighttime LST for
either DFM or TEM (Figure 9). In addition, MODIS nighttime LSTs have been widely identified as indicators
of notably higher performance in Tair estimations than MODIS daytime LSTs (Benali et al., 2012; W. Zhang
et al., 2011; H. Zhang, Zhang, Ye, et al., 2016). The spatial patterns of accuracies of the TLRs using DFM and
TEM based on MODIS nighttime LSTs are consistent (Figures 8b and 8d), and they both show obviously
higher accuracies than those based on MODIS daytime LSTs.

Monthly accuracies for cases using Terra nighttime LSTs indicate that both the DFM and TEM methods have
lower accuracies in warmer seasons and higher accuracies in colder seasons (Figure S2). This may be
explained by the stronger influences of land cover in warmer seasons due to the absence of snow cover.
TEM outperforms DFM for all months with the largest differences in RMSDs of 0.04 °C/100 m for the TLR esti-
mation in comparison with TLRstation occurring in January, February, March, May, and December. It should be

Figure 9. Correlation analysis between the accuracies of Moderate Resolution Imaging Spectroradiometer (MODIS) land
surface temperature-estimated TLRTmean and local climatic/terrain conditions. Significantly (at 0.01 significance level)
positive correlation values are shown in blue; significantly (at 0.01 significance level) negative correlation values are shown
in red; insignificant correlation values are filled as blank. TLR = temperature lapse rate; RMSD = root-mean-square deviation;
DFM = directly from MODIS TLR; TEM = temperature estimation from MODIS TLR.
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noted that the largest RMSD difference (i.e., 0.04 °C/100 m) may produce
a relatively small error of 0.4 °C on average for Tair prediction.
4.2.3. Evaluation of Spatial and Temporal Patterns of TLRDFM
and TLRTEM
Figure 10 plots the TLRDFM, TLRTEM, and TLRstation of Tmean for all 86 sta-
tions. The spatially averaged values (mean ± standard deviation) for all
the stations are 0.76 ± 0.25, 0.71 ± 0.22, and 0.74 ± 0.24 °C/100 m for
TLRDFM, TLRTEM, and TLRstation, respectively. Both TLRDFM and TLRTEM
seem to have spatial patterns similar to TLRstation, while the averaged
RMSDs (Figure 7) indicate that the TEM method shows slightly better
accuracies than the DFMmethod. The spatial distribution characteristics
of TLRstation are mainly controlled by local climatic and terrain condi-
tions. Both TLRDFM and TLRTEM indicate relatively strong correlations
with altitude, longitude, sunshine duration, and relative humidity
(Figure 11). This is highly consistent with TLRstation, indicating that they
have spatial patterns very similar to TLRstation. In addition, both the
DFM and TEM methods captured the dynamics of monthly TLRs well
(Figure S3), with almost the same high R value (0.88).

To conclude, both the spatial and temporal patterns of the MODIS LST-
estimated TLRTmean using both DFM and TEM are highly consistent with
TLRstation. Thus, the capability for the two tested methods to reasonably
reproduce the TLRTmean has been verified.

4.3. How Much Does the TLR Derived From MODIS LSTs Affect the
Accuracies of the Tair Estimation?

Figure 12 shows that when estimating Tair based on the TLR derived
from the MODIS daytime LST, TEM produces notably better accuracy
than DFM, with averaged RMSDs of 1.92 versus 2.66 °C. However, for
cases based on theMODIS nighttime LST, TEM is only slightly better than
DFM with averaged RMSDs of 1.70 versus 1.73 °C. In addition, both the
TLRDFM and TLRTEM based on the MODIS nighttime LST show compara-
tive accuracies to those using TLRstation for the Tair estimation (the aver-

aged RMSD is 1.61 °C). The monthly accuracy variations are shown in Figure S4, and it is clear that both
TLRDFM and TLRTEM show a very similar seasonal pattern to that of TLRstation with higher accuracies in summer
and lower accuracies in winter. This finding is also consistent with that from the central Himalayas (Kattel
et al., 2013).

Figure 10. Spatial distributions of TLRTmean values derived from (b) directly
from MODIS LST (DFM) and (c) temperature estimation from MODIS LST
(TEM) based on Terra nighttime LSTs, and those based on station (a).
LST = land surface temperature.

Figure 11. Correlation analysis between local climatic/terrain conditions and the three types of temperature lapse rate
(TLR), including TLRstation, TLRDFM, and TLRTEM. Significantly (at 0.01 significance level) positive correlation values are
shown in blue; significantly (at 0.01 significance level) negative correlation values are shown in red; insignificant correlation
values are filled as blank.
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Though the differences in the Tair interpolation accuracy among three
of them seem to be small, it should be noted that the effects of the
TLR primarily depend on the “elevation difference.” The influence of
the TLR becomes greater as the difference in altitude between the tar-
get station and the neighboring stations increases. Here we defined
the “sensitivity” as the averaged absolute variation of interpolated Tair
for every change of 0.1 °C/100 m in the TLR. The sensitivity of the inter-
polated Tair accuracy to the variation of TLRstation for all 86 CMA stations
was thus calculated using the same variation range as that in
section 4.1.3. The results show that there is a very high positive correla-
tion (0.93) between the sensitivity to the TLR and the elevation differ-
ences (Figure S5). A “reference” altitude difference is needed to
evaluate the average condition. In this study, this value was set to
1,000 m, which was approximately the difference between the mean
elevation of all CMA stations in the TP (~3,300 m) and the mean eleva-
tion of the TP (~4,300 m) based on the data set from the Shuttle Radar
Topography Mission. In other words, we have to predict the Tair of a
location at an elevation of approximately 4,300 m using the TLR and
the Tair data from CMA stations at elevations of approximately

3,300 m on average. Then, multiplying the error of the estimated TLR by the reference altitude difference
(1,000 m) will produce the expected error of the interpolated Tair deduced by the TLR estimation. Lastly, it
can be concluded that using TEM and DFM based on the MODIS nighttime LST and with averaged RMSDs
of 0.19 and 0.21 °C/100 m, respectively, are expected to generally produce errors for Tair interpolation at
1.9 and 2.1 °C in the TP, respectively. Since the errors are generally ~2 °C for daily Tair estimation in high
mountain areas based on remote sensing products and climate reanalysis data sets (H. Zhang, Zhang, Ye,
et al., 2016; Zhou et al., 2017), the Tair interpolation accuracies from using the MODIS-estimated TLR are con-
sidered to be acceptable for daily Tair estimation in the TP. However, the accuracies of the MODIS-estimated
TLR may not be accepted for climatic analysis considering that the climatic warming rates are generally less
than 0.1 °C/year for the TP (X. Liu & Chen, 2000).

For practical application, the DFM method may be more useful because it does not need actual local Tair
observations, whereas the TEM method relies on Tair estimation using statistical methods. DFM may be par-
ticularly important for its potential use in downscaling Tair data from large-scale climatic forcing data sets,

such as the Global Land Data Assimilation System and the China
Meteorological Forcing Dataset.

4.4. Cloud Contamination and Data Quality

Satellite-based LST data are often contaminated by cloud cover (Z.-L. Li
et al., 2013). Clouds may generally affect the TLR estimation based on
MODIS LST in twoways: (1) cloud cover can greatly decrease the number
of available LST data (Benali et al., 2012; H. Zhang, Zhang, Ye, et al.,
2016); (2) undetected clouds may introduce errors in LST data due to
the deficiency of cloud detection algorithm applied in MODIS product
(Ackerman et al., 1998; H. Zhang, Zhang, Zhang, et al., 2016).

High cloud cover fractions are widely reported in the TP (Tang et al.,
2013; Yu et al., 2016), and the average cloud cover rate is as high as
35–54% for the four MODIS LST terms during 2003–2010 (H. Zhang,
Zhang, Ye, et al., 2016). For the MODIS LST pixels used in this study,
the averaged cloud contamination rates are 45.3, 45.1, 51.8, and 40.6%
for Terra daytime, Terra nighttime, Aqua daytime, and Aqua nighttime
LST terms, respectively. As an indirect effect of cloud contamination,
the constraint employed here that only days with four available LST
terms are used can further decrease the available LST data, and for this
study the days satisfying this criteria only account for 23.7% of the whole

Figure 12. The Tair interpolation accuracies using the estimated TLRTmean
from directly from MODIS LST (DFM) and temperature estimation from
MODIS LST (TEM) based on different MODIS LST terms. TLR = temperature
lapse rate. MODIS = Moderate Resolution Imaging Spectroradiometer;
LST = land surface temperature; RMSD = root-mean-square deviation.

Figure 13. Comparisons of accuracies from the situations of S1 and S2 using
the directly from MODIS LST (DFM) and temperature estimation from MODIS
LST (TEM) methods for temperature lapse rate estimation, based on
MODIS daytime (left) and nighttime (right) LST. MODIS = Moderate
Resolution Imaging Spectroradiometer; LST = land surface temperature.
RMSD = root-mean-square deviation.
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study period. To alleviate this problem, the multiyear average, monthly
TLRs are used for this study resulting that for each month at each station
there is ~60 clear days that can be used for TLR calculation.

However, the large proportion of missing data due to cloud cover may
lead to a bias for studies using MODIS LST (Hall et al., 2006; Hall,
Williams, et al., 2008). It should be noted that in this study, though only
days with four available MODIS LST terms were used for calculating the
TLRDFM and TLRTEM, the TLRstation is derived using the whole study per-
iod including both clear and cloudy days. To further evaluate the repre-
sentativeness of estimated TLRs and the feasibility of our methods, two
situations related with cloud cover are defined as follows: (1) only days
with four MODIS observations without cloud coverage are used, referred
to as “S1”; and (2) for eachMODIS LST term, all the days with correspond-
ing LST term data available are used, referred to as “S2.” The detailed
information of the four cases are listed in Table S1. Figure 13 shows
the comparison results of the two situations. For cases using MODIS day-
time LST, the accuracies of situation S2 are slightly higher than that of
situation S1 with a small decrease of RMSD of ~0.02 °C/100 m. And the
accuracies of both situations are almost the same for cases using
MODIS nighttime LST with the difference in RMSD of less than 0.01 °C/
100 m. This indicates that the missing data caused by cloud coverage
seem to have limited effect in our study. This is possibly owing to that
the calculated TLRs in this study are multiyear average, monthly TLRs

resulting in sufficient samples for calculation. In addition, the averaged TLRstation values from days with four
available MODIS LST terms are 0.74, 0.72, and 0.82 °C/100 m for Tmean, Tmin, and Tmax, respectively, which
are well consistent with those of 0.73, 0.71, and 0.78 °C/100 m from the whole period (see section 4.1.1),
respectively. This also supports that for estimating the multiyear average, monthly TLRs, the representative-
ness of the selected days did not decrease greatly with the large proportion of missing data. We also did a
correlation analysis between the accuracies (RMSD) and cloud cover rates among the 86 stations and no sig-
nificant correlation was found for either of the two situations.

The data quality of MODIS LST may be affected by undetected clouds, especially for MODIS nighttime LST
(Ackerman et al., 1998; H. Zhang, Zhang, Zhang, et al., 2016). Though the LST data with the lowest data quality
(i.e., with the data quality flag value of 3) have been removed as mentioned before, undetected clouds may
still exist in the MODIS nighttime LST. Based on the comprehensive analysis using ground observations in
combination with MODIS LST data, H. Zhang, Zhang, Zhang, et al. (2016) find that using the days with all four
available MODIS LST observations can greatly filter out pixels with undetected clouds, and this is actually the
same way as situation S1 employed in this study. It is hard to distinguish and eliminate the mixed effects of
undetected clouds and the missing data caused by cloud contamination. However, the comparison between
the two situations related with different conditions of cloud coverage shows their accuracies are similar and
both acceptable (Figure 13), indicating that both DFM and TEM using MODIS nighttime LST are feasible to
estimate the multiyear average, monthly TLRs for the TP with acceptable accuracies during the study period.

4.5. Other Uncertainties in TLRDFM and TLRTEM

Combinations of MODIS LST terms may have different effects on the results from the two fundamentally dif-
ferent methods. Since TEM is based on Tair estimation, improving Tair estimation accuracies fromMODIS LSTs
may contribute to more accurate TLR estimations. More MODIS LST terms have been utilized in other studies
to improve the Tair estimations (Benali et al., 2012; W. Zhang et al., 2011; H. Zhang, Zhang, Ye, et al., 2016).
However, it is found that when a MODIS nighttime LST term is used, adding more nighttime or daytime
LST terms has very little effect on the accuracies (H. Zhang, Zhang, Ye, et al., 2016). Multiple MODIS terms
were thus not considered for the TEM method in this study. For DFM, the effects of LST combinations
remained unknown. We tested the performances of DFM based on five different combinations of MODIS LSTs
(Figure 14). The results are fully consistent with section 4.2.1 that TLRTmean estimations are always more accu-
rate than TLRTmin and TLRTmax for all five combinations. The lowest averaged RMSD for TLRTmean based on the

Figure 14. Accuracies of the directly from Moderate Resolution Imaging
Spectroradiometer land surface temperature method based on different
combinations of Moderate Resolution Imaging Spectroradiometer land
surface temperature terms. RMSD = root-mean-square deviation.
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combination of Aqua day and Aqua night is only 0.29 °C/100 m. This indicates that addingmore LST terms for
DFM generally resulted in even lower accuracies than the one based on a single MODIS nighttime LST term
with a lower RMSD of 0.21 °C/100 m. It may also indicate that simply combing multiple LST terms cannot take
full advantage of LST observations at different pass times but addmore uncertainties instead. Daily mean LST
may be more representative for estimating daily Tair and the TLR, but its calculation requires that all the four
MODIS LST terms are available (Duan et al., 2012), which could greatly decrease the data amounts as shown in
Table S1. Future studies may develop more efficient algorithms to take the full advantage of the four daily
MODIS instantaneous observations for better TLR estimation.

The interpolation schememay be another uncertainty source. In previous studies that used the TLR for the TP
(Immerzeel et al., 2014; L. Zhang et al., 2013; F. Zhang et al., 2015), there are two main types of interpolation
schemes: (1) one scheme uses multiple neighboring stations and typically needs to employ a weight calcu-
lating method such as the IDW, similar to the interpolation scheme used in this study; and (2) the other
scheme only uses a single nearest station and interpolates Tair directly based on the TLR. The first type of
interpolation scheme is mainly used for areas with relatively dense station coverage (Immerzeel et al.,
2014) or for large-scale research (L. Zhang et al., 2013). It should be noted that there are some other types
of weight calculating methods apart from IDW, such as the Gaussian filter and Kriging, and they are found
to have similar performances for interpolation methods using the TLR (Stahl et al., 2006). The second type
of interpolation scheme is typically applied in midsized or small basins with only one station which is very
common in the TP (H. Gao et al., 2012; F. Zhang et al., 2015). The TLR is inevitably crucial for the second
scheme but the importance of the TLR is questionable for the first one due to the process of weight calcula-
tion. Sensitivity tests as specified in section 4.3 show that a 0.1 °C/100 m change in the TLRstation is found to
result in the Tair changes of 0.32 and 0.38 °C on average for the first and second types of schemes, respec-
tively. As previously discussed, the effects of the TLR on Tair interpolation mainly depend on the altitude dif-
ference. The averaged altitude differences for the two schemes are 356 and 381 m, respectively, which are
expected to generally produce changes of 0.36 and 0.38 °C, respectively, for every change of 0.1 °C/100 m
in the TLR. The small difference between 0.36 and 0.32 °C for the first scheme indicates that the weight cal-
culation process truly compensates for some effects of the TLR, but the TLR still plays a dominant role in the
first type of scheme.

5. Conclusion

Our research investigated and compared two methods of estimating the air TLR based on MODIS LSTs. The
observed TLRs were derived from neighboring stations selected through sensitivity tests among the 86 CMA
stations located in the eastern TP. Both the method that computes lapse rates directly from MODIS (DFM)
LSTs and the method based on air temperature estimation from MODIS LSTs (TEM) were applied for estimat-
ing the monthly mean TLR of daily maximum (Tmax), minimum (Tmin), and mean (Tmean) air temperatures.
In addition, all four MODIS LST terms, including Terra day, Terra night, Aqua day, and Aqua night LSTs, were
tested using both methods.

The results show that based on MODIS LST, the TLR of Tmean is more accurately estimated than that of
Tmin and Tmax. This finding is consistent among the two methods of DFM and TEM using the four
MODIS LST terms. For cases based on MODIS daytime LSTs, TEM indicates notably higher accuracies than
DFM, with averaged RMSDs of 0.30 for TEM versus 0.60 °C/100 m for DFM. However, for those cases based
on MODIS nighttime LSTs, both DFM and TEM show obviously higher performances with averaged RMSDs
of 0.21 and 0.19 °C/100 m, respectively. Such errors in the TLR are expected to result in the Tair interpola-
tion errors of 2.1 and 1.9 °C on average based on DFM and TEM, respectively. The spatial and seasonal
patterns of MODIS LST-estimated TLRTmean are highly consistent with those of TLRstation for both DFM
and TEM.

This study provides a useful implication that directly computing the lapse rates of MODIS nighttime LSTs has
the capability to simulate the monthly TLRTmean at relatively high accuracies. It can help alleviate the data-
sparse problem in downscaling Tair or hydrological modeling studies in ungauged areas. The DFM method
also has a good potential to be applied in the western TP with extremely sparse observations due to its
advantage of needing no Tair observations compared with the TEM method. Considering the obviously dif-
ferent land covers, elevations, and climatic conditions, the performance of the DFM method on the western
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TP may need further studies. It should be noted that either DFM or TEM is not unique for the TP, but future
studies may be needed to evaluate their performances in other regions.
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