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Abstract Recently, remotely sensed land surface temperature (LST) data have been used to estimate air
temperatures because of the sparseness of station measurements in remote mountainous areas. Due to
the availability and accuracy of Moderate Resolution Imaging Spectroradiometer (MODIS) LST data, the use of
a single term or a fixed combination of terms (e.g., Terra/Aqua night and Terra/Aqua day), as used in previous
estimation methods, provides only limited practical application. Furthermore, the estimation accuracy may
be affected by different combinations and variable data quality among the MODIS LST terms and models.
This study presents a method that dynamically integrates the available LST terms to estimate the daily mean
air temperature and simultaneously considers model selection, data quality, and estimation accuracy. The
results indicate that the differences in model performance are related to the combinations of LST terms and
their data quality. The spatially averaged cloud cover of ~14% for the developed product between 2003 and
2010 is much lower than the 35–54% for single LST terms. The average cross-validation root-mean-square
difference values are approximately 2°C. This study identifies the best LST combinations and statistical
models and provides an efficient method for daily air temperature estimation with low cloud blockage over
the Tibetan Plateau (TP). The developed data set and the method proposed in this study can help alleviate
the problem of sparse air temperature data over the TP.

1. Introduction

The Tibetan Plateau (TP) is the highest large plateau in the world, with an average elevation over 4000m
and an area of approximately 3 × 106 km2 above an elevation of 2500m (Figure 1) [G Zhang et al., 2013].
Many studies have shown that the TP plays a crucial role in regional and global climate changes due to
its extremely complex terrain and physical surface properties [Flohn, 1968; Rohrer et al., 2013; Yasunari
et al., 1991]. Air temperature [Liu and Chen, 2000; Thompson et al., 2000; Zhou and Yu, 2006] serves as an
important factor for describing the characteristics of terrestrial environmental conditions. In particular, it
is a key input for various hydrological, ecological, and environmental models [Daly, 2006; Stahl et al.,
2006]. For example, air temperature not only controls the snowmelt processes in mountainous hydrological
modeling [Hock, 2003; F Zhang et al., 2015] but also significantly impacts numerous biogeochemical pro-
cesses [Ninyerola et al., 2007; Spadavecchia and Williams, 2009]. Successfully implementing these models
depends on reliable and accurate air temperature data [Daly, 2006; Thornton et al., 1997]. However, air
temperature measurements from meteorological stations are usually scarce in remote mountainous areas
such as the TP [Green and Hay, 2002; Prihodko and Goward, 1997; Yao and Zhang, 2013; Zakšek and
Schroedter-Homscheidt, 2009].

Remotely sensed land surface temperatures (LSTs) have been widely used to estimate daily air temperatures
based on the strong correlation between the LST and air temperature resulting from the intense heat
exchange and interaction between the land and the atmosphere [Benali et al., 2012; Janatian et al., 2016;
Oyler et al., 2016; W Zhang et al., 2011]. Many methods have been developed to estimate air temperature
using remotely sensed LST data from various sensors, including Landsat-ETM+ [Wloczyk et al., 2011], the
Advanced Very High Resolution Radiometer [Prince et al., 1998], the Spinning Enhanced Visible and
Infrared Imager on Meteosat Second Generation [Zakšek and Schroedter-Homscheidt, 2009], and the
Moderate Resolution Imaging Spectroradiometer (MODIS) [Benali et al., 2012]. Among the different types
of remote sensing data, the most popular and easily obtained data set is the LST product supplied by the
MODIS instrument aboard the Terra and Aqua satellites.
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However, the cloud blockage in the MODIS LST data set limits its application. When a satellite pixel is covered
by clouds, the corresponding MODIS temperature observation for the pixel does not represent the land
surface and instead represents the cloud top. As a result, cloud blockage seriously degrades the quantity
of available high-quality data in the MODIS LST terms. A single LST term (e.g., Terra Night, Terra Day, Aqua
Night, and Aqua Day) for air temperature estimation is subject to serious data gaps caused by high degrees
of cloud blockage. Thus, developing a method that can dynamically utilize different combinations of LST
terms that are available at different times is critically important to reducing cloud blockage.

In addition, the impact of MODIS LST data quality on the air temperature estimates lacks sufficient attention
in the current statistical methods. In addition to the LST value, a MODIS LST product also includes information
on data quality stored in built-in quality control (QC) flags, which feature four integer values from 0 to 3. The
QC flag of 0 represents the best data quality with an average error of less than 1 K (Kelvin). The average errors
for the other QC flags of 1, 2, and 3 are greater than 1 K. Among the MODIS LST data over the TP, the number
of data with QC flags of 3 is less than 1%, but the data with QC flags of 1 and 2 comprise 30–50% of the entire
data set. Given the large proportion of less accurate data (with QC flags of 1 and 2), simply discarding the data
when using statistical methods is not justifiable. Therefore, it is necessary to investigate the negative effects
of the less accurate data on the performance of the statistical models.

To improve the estimation accuracy, the multiple linear regression model [Benali et al., 2012; Fu et al., 2011;
Good, 2015; Vancutsem et al., 2010] and more complex models have been developed, including neural net-
works [Zhao et al., 2007], the M5 model tree [Emamifar et al., 2013], and random forests [Y Xu et al., 2014].
Currently, these models have not been compared in the same region, and the best model for air temperature
estimation remains unknown.

Due to the scarcity of field observations and the aforementioned unsolved problems associated with air tem-
perature estimations, no accurate data set of daily mean air temperature over the TP is currently available.
Such a data set would be of great use for small- and medium-sized watershed modeling because only a
few or even no meteorological stations are present in many mountainous watersheds across the TP and
because the existing air temperature products feature coarse spatial resolutions (≥10 km) that cannot
satisfactorily describe the spatial heterogeneity. In this study, we developed a method for air temperature
estimation that involves dynamically integrating the available LST terms. Among the various types of air
temperature measurements (e.g., maximum, minimum, and average temperatures at different time resolu-
tions such as daily, weekly, and monthly), this study is focused on the daily mean air temperature, which is
popularly used for daily-scale models [F Zhang et al., 2015].

2. Data and Methodology
2.1. Meteorological Data

Daily mean air temperatures from 95 metrological stations (Figure 1) were obtained from the CMA (China
Meteorological Administration, http://cdc.nmic.cn). The data were measured at 2m above ground between

Figure 1. Study region and the locations of the meteorological stations.
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2003 and 2010. Most stations are located in the eastern TP. The vast western and central regions have almost
no stations. Furthermore, approximately 71% of these stations are at relatively low elevations (<4000m), and
no stations are present at an elevation greater than 5000m. The sparseness of the stations highlights the
necessity of air temperature estimates for areas with few measurements.

2.2. Land Surface Temperature

The primary variable, LST, is from “The MODIS Land Surface Temperature and Emissivity (LST/E) products
V005”with product labels of “MOD11A1” and “MYD11A1” for Terra and Aqua, respectively. The “V005” version
achieved some refinements compared with previous versions and proved to be accurate in most of clear-sky
cases with the errors less than 1 K [Wan, 2008]. The pass times of Terra occur at the approximate local solar
times of 10:30 A.M. and 10:30 P.M.; the pass times of Aqua occur at the approximate local solar times of
1:30 P.M. and 1:30 A.M. [Wang et al., 2006]. Thus, within 1 day, MODIS can provide four LST terms. The four
LST observations (i.e., “terms”)—Terra Night, Terra Day, Aqua Night, and Aqua Day—are all used in this study.

As previously mentioned, the MODIS LST product also provides information on cloud blockage and data qual-
ity in addition to the LST values. If the LST data in a specific pixel are not available because of cloud blockage
or other reasons, the data are labeled as “not produced” and can be identified in the LST product. The data
quality information is stored in built-in quality control (QC) flags, which have four values from 0 to 3. The
average errors associated with the “0,” “1,” “2,” and “3” flags are <1 K, 1–2 K, 2–3 K, and> 3 K, respectively.
In practice, the proportion of good data was 50–70% and that of bad data was 30–50% for the four LST terms.
The LSTs with average errors of >3 K (QC flag= 3) were removed in this study.

2.3. Auxiliary Variables

Longitude, latitude, Julian day, solar zenith, normalized difference vegetation index (NDVI), and elevation
have commonly been used in previous studies as auxiliary variables [Benali et al., 2012; Cristobal et al.,
2008; Florio et al., 2004; Jang et al., 2004; Y Xu et al., 2014]. Thus, these six variables were selected as model
inputs in our study in addition to the MODIS LST data. Longitude and latitude data were supplied from the
meteorological stations. The solar zenith and required spectral information for computing the NDVI were
all derived from the MODIS Surface Reflectance products labeled “MOD09GA” and “MYD09GA” for Terra
and Aqua, respectively. The daily NDVI was computed in the same manner as in Zhu et al. [2013] and Y Xu
et al. [2014] by equation (1):

NDVI ¼ BNIR � BREDð Þ= BNIR þ BREDð Þ; (1)

where BNIR and BRED represent the band 2 (near infrared) and band 1 (red) of the MODIS Surface Reflectance
product, respectively. The NDVIs produced at 500m resolution are converted to 1000m using nearest neigh-
bor resampling methods to be consistent with MODIS LST products. The elevation information was derived
from the Global 30 Arc Second Elevation (GTOPO30) data set, with a spatial resolution similar to that of the
MODIS LST data.

2.4. A Method of Integrating the Four MODIS LST Terms

We propose a method that can dynamically make full use of the available LST terms, namely, the LST data
among the four passing times to produce air temperature data with minimal cloud blockage.

As shown in Figure 2, a key part of our method is the model ranking table. To generate it, four steps are
generally needed:

1. First, we extracted all of the available (i.e., not covered with clouds) LST terms from the pixels where the
observation stations were located as “samples.” These data were further classified into two categories
based on the built-in quality control flags in the MODIS LST product. The LSTs with average errors
of< 1 K (QC flag= 0) were considered to be of good quality, and the LSTs with average errors of >1 K
(QCflag= 1–2)wereconsidered tobeofpoorquality. Tokeepthingssimple, allof thesamples inour research
aredivided into twocategories:Whenall four of the LSTswereof goodquality, the combinationwas labeled
an “S1” situation; when at least one LST was of poor quality, the combination was labeled an “S2” situation.
This categorization resulted in twogroupsof samples, namely, “S1 samples”and “S2 samples,”withdifferent
data qualities, as shown in Figure 2.

2. Second, after conducting complete permutations and combinations, 15 combinations (i.e., 24� 1) of the
four LST terms were obtained (Figure 3).
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3. Third, for each combination under each quality situation, six statistical models were evaluated including
model training and validation. Then, the performances of the six models were compared and the best
model with the highest accuracy was chosen for each combination. The models used in this study are
described further in section 2.5.

4. Finally, after all of the best models for the 15 combinations in the two quality situations were decided, the
30 (=15 × 2) models were ranked based on their cross-validation results, generating a model ranking table
in which models with lower cross-validation root-mean-square difference (RMSD) values were ranked
higher.

The ranking table was then used to guide the air temperature product generation process as follows. Every
day for each pixel, the data availability status and quality status were identified. Our method automatically
selected the best model corresponding to the specific status using the model ranking table.

Figure 2. Flow chart of the method for integrating the MODIS LST data from four pass times.
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For example, for a specific pixel on a
certain day, the data availability sta-
tus was as follows. Only Terra day
and Aqua night were available
because Terra night and Aqua
day were covered with clouds
(Figure 4a). The quality statuses
showed that the Terra day was of
good quality and the Aqua night
was of poor quality (Figure 4a).
Such data conditions result in three
possible combinations according to
Figure 3 and the quality situations
(Figure 4b). In this case, the poten-
tial models include Combinations
01 (of the S1 situation), 04 (of the
S2 situation), and 06 (of the S2 situa-
tion) (Figure 4b). The models for
these combinations are sorted using
the model ranking table, and the

best one is selected (Figure 4c) as the final model to be used for air temperature estimation for that pixel
on that day.

As shown in Figure 2, our method not only takes into consideration all combinations of the LST terms and the
two data quality situations but also conducts model selection among different statistical models based on
the estimation accuracy, which depends on the LST combination and data quality. These considerations
and processing are deemed valuable for the following reasons:

1. Consideringall of thepossible combinationsof LST cancontributegreatly to theaccuracyof air temperature
estimates. In many cases where multiple LST terms are available, the solution lies in which combination

Figure 4. A sketch of the model selection process using a model ranking table. (a) First, the LST data conditions are
identified (shaded means unavailable, italics mean poor quality). (b) Second, all the possible combinations are obtained
according to Figure 3 and the quality situations. (c) Last, all the corresponding models are sorted based on the model
ranking table and the highest one is selected. A dashed-line box indicates a potential model with lower accuracy. A solid
line box indicates the selected model with the highest accuracy.

Figure 3. The compositions of 15 combinations of MODIS LST data.
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shouldbe selected. This is, in fact, an LSTvariable selectionproblem.Ourmethodmakes adecisionbasedon
estimation performance.

2. Accounting for data quality can help improve product accuracy. As previously stated, the poor quality LST
data (QC flags = 1–2) may comprise a large portion of the data, and these “bad” data could have negative
effects on model performance. Previous studies just removed the worst data with a QC flag of “3,” which
were found to be very limited in our study area. This approach is insufficient. Our method actually consid-
ered two situations to resolve two practical problems: (i) when the LST inputs are high quality, our method
ensures that the best models for high-quality data are selected, and (ii) when the LST inputs are a mix of
both good and poor data, i.e., some of the LST terms are good and others are bad, our method can identify
whether the models should use only the “good” LST terms or should include more LST terms that contain
some degree of “bad” data.

3. Multiple model comparisons are needed for model selection and for optimizing estimation accuracy. As
previously mentioned, different models have been used for air temperature estimation, but whether
the selection of different models can improve accuracy is uncertain. Our method can identify which
model is best and whether it is necessary to use complex models in place of simple ones, i.e., whether sig-
nificant differences exist between model performances.

2.5. Models

The six statistical models tested in this study include the multiple linear regression (MLR), the partial least
squares (PLS) regression, back propagation neural network (BPNN), support vector regression (SVR), random
forests (RFs), and Cubist regression (CR). The first two methods, MLR and PLS, are intrinsically linear. MLR is
easy to interpret and is the most common approach in previous studies [Benali et al., 2012; Fu et al., 2011;
Good, 2015; Kim and Han, 2013; Lin et al., 2012; Xu et al., 2014; Vancutsem et al., 2010]. The addition of PLS
for comparison is mainly to address the colinearity issues of MLR which might degrade its estimation
accuracy. However, the actual relationship between the variables and the response may be nonlinear.
Although some nonlinear terms can be added to these models, we do not know the real specific form of
the nonlinearity. Thus, the methods that are intrinsically nonlinear—machine learning or data mining
methods—may help improve the predictions. Therefore, the last four advanced models (BPNN, SVR, RF,
and CR) were tested in our research. The six models are included in the supporting information (Text S1).

For the purpose of obtaining more accurate and reliable conclusions for both parameter tuning and model
validation, all of the models were built using resampling techniques, including bootstrap [Efron, 1979;
Efron and Tibshirani, 1986] or k-fold cross-validation [Kohavi, 1995] methods. For efficient computingmethods
such as MLR and PLS, the bootstrap method with 100 repetitions and the 100-fold cross-validation method
were employed, respectively. The remaining four models were tuned using tenfold cross validation due to
the heavy computing load.

2.6. Model Validation, Comparison, and Selection

In this study, the RMSD andmean absolute difference (MAD) were used as the performance measurement for
tuning, validating, and comparison of the six statistical models used in this study. We validated the modeling
results in three ways. In the first validation, all six models were validated using leave-one-out cross validation
based on an approach in which every time the samples of one station are left out as validating data, all of the
remaining serve as training data. This process was repeated for all stations in turn. The final validation result
was the average of the RMSDs validated at all stations, and these results were also used for multiple
comparisons discussed later. This process is a traditional and popular validation method.

The second validation involved using the data from stations with longitudes > 91 ° as training samples
(~73%) and using the remainder as testing data (~27%). The third validation involved using the samples from
stations with elevations of< 4000m as training data (~71%) and using the remaining for validation (~29%).
The latter two methods can be taken as a stratified validation as described by Daly [2006]. We used the latter
two validation methods because the meteorological stations in our study area are not distributed uniformly.
According to Figure 1, only a few stations are located on the western TP. With respect to elevation, most of
stations are located at relatively low elevations. However, a cross validation does not provide much error
information in the unobserved areas, and a stratified validation can be used to test the expandability of
the models to the very sparsely observed western region and to areas at higher elevations. The latter two
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validation methods were implemented after all of the “optimal” models for each combination and quality
situation were determined. Furthermore, the critical 91° longitude and elevation of 4000m were chosen
for splitting all of the samples into appropriate proportions for training and validating.

In addition to the comparison of the six statistical models, different combinations of LST terms and data qual-
ity situations needed to be considered. To help confirm the performance differences, statistical tests were
performed using multiple comparisons based on a paired unequal variances t test with Bonferroni correction
for 15 LST combinations. As previously indicated, our first validation method was based on data from 95
different stations, resulting in 95 performance measurements for each combination. Therefore, multiple
comparisons can be conducted among different combinations based on these “observations.”

Generally, this multiple comparison approach can yield several “groups” whose members have no significant
differences in model performance at the 95 different stations. If listing all the models to be compared are
listed in order of average performance measurement (e.g., RMSD), the “groups” are basically arranged with
the overlap of certain members. This approach provides a reliable way for us to identify the best group or
to determine “several optimal models.”We can then choose the final model that has the least standard error
in the “observed” performance measurements (RMSDs). This practice is inspired by the benchmark experi-
ments from Eugster [2011]. In our research, the diagnostics of homogeneity indicate that our data are signifi-
cantly heteroscedastic and that the problem of nonnormality is not severe. Therefore, we selected the paired
unequal variances t test as our testing method according to McDonald [2009]. To alleviate the problem asso-
ciated with multiple comparisons, we performed simple Bonferroni corrections [Dunnett, 1955] on each test.

2.7. Implementation and Product Generation

Most of the variable samples for model building, including MODIS LST, solar zenith, and NDVI (based on
MODIS Surface Reflectance products coded as “MOD09GA” and “MYD09GA”), were extracted or computed
directly from the MODIS data files in HDF4 format using standalone software (programmed in C#) developed
by the author. The derived records were then imported into R [Team, 2012] for statistical analysis and model
testing. The final product is in GeoTIFF format with the widely used Albers equal area conic projection based
on the WGS84 datum, generated with the R programing software. Various R add-on packages contributed to
our work, including bootStepAIC, caret [Kuhn and Johnson, 2013], pls, kernlab, nnet, randomForest, Cubist,
and rgdal.

3. Results
3.1. Parameter Tuning Results

Extensive parameter tuning was conducted for each model to assess its full performance. The tuning results
are included in the supporting information (Figures S2–S7). For MLR (Figure S2), the number of variables is
tuned for each combination of LST using a stepwise method for 100 bootstrap resampling repetitions. The
tuning results of PLS (Figure S3), BPNN (Figure S4), and CR (Figure S7) are all scree plots. Using these plots,
we easily confirmed the optimal parameter value at which the RMSD no longer significantly declined. SVR
(Figure S5) and RF (Figure S6) yielded upward parabola-like graphs; therefore, we straightforwardly and easily
determined the final parameter value with the lowest RMSD for each combination. All the tuning results (in
the supporting information) are from the S1 quality situation, in which all the LST terms are high quality. The
same processes were also performed for the S2 quality situation.

3.2. Different Combinations of MODIS LST Terms for Predicting Performance

Figure 5 plots the RMSDs of each combination for all six statistical models. We also performed multiple com-
parisons for each model. The results are shown as letters at the top of each combination. In each subplot, the
combinations with a same letter at the top exhibit insignificant differences in the RMSD outcomes for the 95
cross validations between these combinations. We can see that for all six models, significant differences
generally exist among the different combinations of LST terms, indicating the necessity of considering the
combination of LSTs to some degree.

Furthermore, for most of the models, the combinations of nos. 15, 13, 11, and 8 can be taken as a group with
lower average RMSD values than the rest, followed by another group consisting of nos. 3, 4, 5, 6, 9, 10, and 14,
whose RMSDs are lower than the remaining combinations, including 1, 2, and 7. According to Figure 3, which
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describes the compositions of the LST combinations, we found that the largest difference among the
three groups is related to the night LST: the more night LST terms introduced, the higher the accuracy of
the model. The number of night LST terms in the combinations of the first, second, and last group is 2, 1,
and 0, respectively.

We also found that the LST terms from Terra and Aqua exhibited averagemixing in the combinations for each
group. This observation indicates that although the overpass times of Terra and Aqua are different, no
significant differences exist between their predictive performances with respect to daily mean air tempera-
ture estimations. These findings are consistent with those of previous studies [Benali et al., 2012; W Zhang
et al., 2011] using MLR.

Figure 5. Cross-validation results for every combination of each model and multiple comparisons among different
combinations. The x axis is in ascending order of the average RMSD of the cross validation. The box and whiskers show
the distributions of RMSDs. Model type indicated in the top left of each panel. See Figure 3 for “combination number.” The
same letters at the top mean no statistical significance in difference.

Figure 6. Comparison of different statistical models for each combination under the (a) S1 and (b) S2 quality situations.
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However, because we considered all of the possible combinations of LST, we obtained more findings. The
letters at the top of the first two groups seem to be rather complicated, indicating that it is hard to identify
their differences due to very similar RMSDs. On the contrary, obvious differences are observed between the
first two groups and the last one: Among these groups, their top letters are entirely different, and the average
RMSDs differ significantly, indicating that if only the day LST term is used, the model performance will be
significantly lower.

Please note that all the above results are for the S1 quality situation in which all four LST terms are of good
quality. We also conducted the same comparison for the S2 quality situation and achieved similar results
(not shown).

3.3. The Effects of Different Statistical Models

Figure 6a shows the performances of all six statistical models for each combination in the S1 situation.
Basically, their performances can be divided into three grades: RF and CR achieved the first grade because
they clearly outperformed the others; BPNN ranked second because the performance was generally slightly
better but sometimes (for combination C01, C02, and C07) had a significantly lower RMSD than the other
three models; and MLR, PLS, and SVR made up the lowest grade, because their performances were similarly

Figure 7. Comparison of different statistical models for each combination under the S1 quality situation based on multiple
comparisons. The unique red point represents the final model for each combination. The x axis is in order of the average
RMSD of the cross validation. The same letters at the top mean no statistical significance in difference.
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poor. To identify the differences between these models for each combination, we performed 15 paired
unequal variances t tests with Bonferroni correction, and the results are shown in Figure 7. Our study featured
not only LST combinations but also multiple models. Thus, their mixed effects are evident.

For combinations that only consider day LST terms, including C01, C02, and C07, the advanced models
(especially, CR and RF) perform significantly better than the simple ones, as demonstrated by the clearly
different letters at the top (having the same letters means no statistical significance in difference).
However, for most combinations that introduce night LST data into the modeling (i.e., all of the combinations
except C01, C02, and C07), the performances of the more complex models (e.g., CR, RF, and BPNN) were not
significantly better than the MLR or PLS, compared with those only having day LST terms.

From Figures 6a to 7, we conclude that model selection, i.e., choosing the simple or complex model, does
have an effect on predicting performance in some cases. When only the day LST terms are available, the
advanced models, including the CR, RF, and BPNN, are strongly recommended because they result in
obviously lower average RMSDs (Figure 6a), and the differences between thesemodels and the simplemodels

Figure 8. Comparison of different statistical models for each combination under the S2 quality situation based on multiple comparisons. The unique red point
represents the final model for each combination. The x axis is in ascending order of the average RMSD of the cross validation. The same letters at the top mean
no statistical significance in difference.
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are significant (Figure 7). However, in
cases where the night LST terms are
available, the selectionofmodelsgen-
erally does not have a significant
effect on the estimation performance.

It should be noted that to consider
the robustness of the model perfor-
mance measurement, the same com-
parisons are also conducted based on
MAD. The results are included in the
supporting information (Figure S8),
and similar conclusions are achieved.

In our research, to explicitly choose a
target model for each combination
(see Figure 2 and section 2.4), the
selection process was as follows: For
each combination, the best model
group was first determined by listing
all six models in order of their
average RMSD values, which are
representative of model perfor-
mance, and choosing the foremost
group that had the same letter at
the top, which indicates that the
models in this group had insignifi-
cant differences in model perfor-
mance. Then, the model with the
lowest standard error of validation
RMSDs in the chosen group was
selected as the final model.

3.4. The Effects of LST Quality

Figure 6b shows the general perfor-
mance information of the S2 quality
situation when not all of the available

LST terms are of good quality. Compared with the results of the S1 situation in Figure 6a, where all the
available LST terms are of good quality, certain differences definitely exist: (1) the performances of all models
generally decreased to varying degrees; (2) the more complex models performed better than the MLR and
PLS, with an obviously larger decrease in RMSD; and (3) CR outperformed all the other models for every com-
bination in the S2 situation. These results imply that no significant performance differences exist among the
candidate models for most combinations in the S1 quality situation; however, when the LSTs include poor
quality data, the advanced or complex models obviously outperform the simple ones. Therefore, it is neces-
sary to replace the simple methods such as MLR or PLS with the more complex models.

To confirm the final model selection for all combinations in the S2 situation, we performed the samemultiple
comparisons amongmodels for each combination plotted in Figure 8. As in the S1 situations, we selected the
model with the lowest standard RMSD value from the best group of models, i.e., those both at the front and
with the same letter at the top. The comparison results based on MAD are also included in the supporting
information (Figure S9).

3.5. Ranking Table

Having determined the best model for each combination under both quality situations, we generated a rank-
ing table (Figure 9) of all of the selectedmodels in ascending order of validation performance as measured by
average RMSD. When the night LST is considered, the performances of all corresponding combinations in the

Figure 9. Final model ranking table for each LST combination under both
quality situations. The y axis is the number of LST combinations and quality
situations; e.g., “C06|S2” indicates a combination of No. 6 in the second
quality situation.
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S1 situation were better than those of S2. However, counterintuitively, the performances of C01, C02, and C07
under the S1 situation are worse than those in the S2 situations. We attribute this “abnormity” to the relatively
weak correlation between the day LST and daily mean air temperature; the errors in the day LSTs may add
significant randomness to the final results.

3.6. Produced Air Temperature

Based on the ranking table (Figure 9), the scheme described in sections 2.4 and 2.7 produced the final pro-
duct of daily mean air temperature over the TP with a high spatial resolution of 1 km. Furthermore, to provide
potentially useful information on errors, a by-product was created to accompany the daily mean air tempera-
ture product with the same temporal and spatial resolution. This by-product contained a “model code” that
records specific information on which combination and quality situation were used in the estimation for
every pixel on each day.

To provide the overall perspective of the final product, the spatial patterns of the generated air temperatures
were evaluated. Figure 10 plots the spatial distribution of the seasonally averaged daily mean air tempera-
tures from 2003 to 2010. In spring (Figure 10a) and autumn (Figure 10c), the mean air temperatures for most
areas are below 0°C. Only very few areas are above 0°C in winter (Figure 10d) and below 4°C in summer
(Figure 10b). According to Li et al. [2003], the spatial distribution of air temperature over the TP is determined
by vertical and latitudinal zonality: (1) the higher the elevation, the lower the air temperature and (2) the
higher the latitude, the lower the air temperature. Generally, these trends can be reflected in the spatial
pattern as in Figure 10, with the latitude, longitude, and elevation information indicated in Figure 1.

4. Discussion
4.1. Selection of Variables

Removing problematic variables or adding informative ones may improve model performance. In our
research, we obtained six auxiliary predictors that were most commonly used in former studies. Previously
reported results do not indicate whether adding certain auxiliary variable actually results in significant
improvement [Benali et al., 2012]. Other potential variables, including the albedo [Y Xu et al., 2014], solar radia-
tion [Emamifar et al., 2013], and surfacemoisture conditions [Kim and Han, 2013], may also be significant; how-
ever, it is difficult to consider every possible factor. For the MLR, we used the popular stepwise method to
remove confounding variables for each combination, but the other five models did not take noise variable

Figure 10. Spatial distribution of the seasonally averaged daily mean air temperatures for 2003–2010 in (a) spring, (b) sum-
mer, (c) autumn, (d) winter, and (e) the full year.
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removal into account. Variable selection in the machine learning methods, including BPNN, SVR, RF, and CR,
maymake some difference. However, themuch heavier computational burden of themachine learningmeth-
ods (relative to the simpleMLR) would take toomuch time to perform detailed predictor selection for the four
advancedmodels. Therefore, we focused on different combinations and quality situations associated with the
LST data because they are inevitably the most important factors in this study.

4.2. Model Accuracy and Validation

Typically, the errors in air temperature estimation are larger in association with high temporal resolution than
with lower temporal resolution. For example, Benali et al. [2012] reported an RMSD of 1.33°C for an 8 day aver-
aged air temperature estimation in Portugal with relatively uniformly distributed and dense stations, whereas
Emamifar et al. [2013] observed an RMSD of 2.3°C for the daily mean air temperature estimation in southwest
Iran. In previous studies, errors in daily air temperature estimation using statistical methods generally fall in
the range of 2–3°C [Benali et al., 2012; W Zhang et al., 2011]. It should be noted that the accuracies reported
in these studies are actually incomparable with those of this research, owing to the different study areas, LST
accuracies, and other factors. However, all the statistical models used in previous studies mentioned above
are tested and compared under the same conditions in our study. The accuracies of our product using the
proposed method are considered to be optimal among the selected six models and different LST conditions,
as described in section 2.4.

In this study, the average RMSDs based on leave-one-out cross validation ranges from 1.81°C to 2.64°C for the
S1 situation and from 2.03°C to 2.43°C for the S2 situation (Figure 9). Except for the combinations containing
only the day LST, the average RMSDs are all approximately 2°C. Furthermore, the air temperatures produced
using the models containing night LST terms account for 87% of the total LSTs estimated. Thus, in most cases,
the accuracy of our product is relatively high according to the validation results of the final models listed in
Figure 9. Given the complex terrain, climate conditions, and high elevations on the TP, we considered the
validation results to be highly acceptable.

The results of the stratified validations using the method described in section 2.5 are displayed in Figure 11.
Compared with cross validation, the performances of all of themodels of decreased to varying degrees under
stratified validation. In the S1 situation, for combinations using the night LST, the mean RMSDs of the
longitude- and altitude-stratified validations were 2.20°C and 2.38°C, respectively (Figure 11a). For
combinations using the night LST in the S2 situation, the mean RMSDs of the longitude- and altitude-
stratified validations were 2.66°C and 2.70°C, respectively (Figure 11b). In our study, the air temperatures

Figure 11. Cross validation and longitude- andaltitude-stratifiedvalidationsof thefinal 30models under the (a) S1 and (b) S2
quality situations.
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produced using the models containing night LST terms accounted for 87%; therefore, in most cases, the
accuracies in the west and high-elevation areas with few gauging stations are still highly acceptable.
The errors in the daily air temperature estimation generally fall in the range of 2–3°C [Benali et al., 2012].
The decreased performance in both the S1 and S2 situations in the west and high-elevation areas may neces-
sitate establishing more stations in the ungauged areas for future research.

It should be noted that the accuracies of the data set produced using the proposed approach can be very
heterogeneous. The spatial and temporal properties of the errors can be evaluated using the by-product
mentioned in section 3.6 which record the “model code” for every pixel on each day. The model code values
of 1–30 correspond to models listed in Figure 9 (from top to bottom).

4.3. Data Availability

One of the most important objectives of the proposed method was to reduce the cloud blockage in the final
air temperature product. Figures 12a–12f show the cloud-blocking rate in our study region in six common
cases that only use single LST terms or a simple combination of LST terms from 2008 to 2010. The cloud-
blocking rate indicates the percentage of days when the LST data were not available during the investigation
period. The clearly higher cloud-blocking rate of night LST than that of day LSTmay be due to the fact that the
daytime cloud algorithm of MODIS is expected to present more confidence than that for nighttime due to the
availability of visible channel data in daytime [Ackerman et al., 1998]. All six cases suffered from the serious
problem of high cloud blockage, with a mean cloud-blocking rate of 35–65%. However, the final product
using our method features much less cloud blockage than the spatially averaged cloud-blocking rate, with
a value of only 14%, as shown in Figure 12g.

We found that most of the areas unobserved in situ in the center and western TP have very low cloud block-
age. Furthermore, the areas with low MODIS data availability are mostly located along the southeastern
boundary of the TP, where the meteorological stations are relatively dense, making it feasible to fill in the
missing data through interpolation of observation data using geostatistical methods [Kilibarda et al., 2014]
in future research.

Figure 12. Spatial distribution of the cloud-blocking rate for the LSTs of (a) Aqua day, (b) Aqua night, (c) Aqua day and
night, (d) Terra day, (d) Terra night, (e) Terra day and night, and (g) the developed product. The “cloud-blocking rate”
represents the percentage of days for which the LST data were not available during the investigation period.
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4.4. Implications for the Selection of LST Terms and Statistical Models in Practical Applications

Our study indicates that in practical applications, the accuracies of daily air temperature estimation using
MODIS LSTmay be influenced by the combinations and qualities of LST and the selection of statistical models.
It should be noted that the findings obtained in this study only apply to the estimations of daily mean air
temperatures, and the results for other types of air temperatures (e.g., daily maximum) may be well different.

When multiple LST terms are available, it may be important to determine which LST term or which combina-
tion of LST terms should be used. Based on the results shown in section 3.2 (Figure 1), the night LST term is a
guarantee of high accuracy and should always be used regardless of themodel employed or the quality situa-
tion. It is also useful to understand that in practice, when night LST is available, adding the day LST term will
achieve little improvement (for example, compare the combinations C03 and C05 or the combinations C08
and C13). This finding is particularly useful in cases when good night LST and bad day LST are available. In
fact, in these cases, we do not need to use additional day LST data for air temperature estimations because
they introduce the uncertainty associated with poor quality day LST data.

The selection of models depends on the LST combinations and quality situations. When the night LST is avail-
able and the model is trained under good quality situation (S1), it is not necessary to use complex methods
because these methods impose a much heavier computing burden and may introduce greater uncertainty
compared to MLR or PLS with little improvement in the prediction performance, as indicated in section 3.3
(Figures 6a and 7).

However, in cases where only the day LST is available, it is essential to replace the simple methods with
advanced models according to our results (Figures 6a and 7) regardless of the quality situation. This
finding can be explained to some degree by the differences in the relationships between the LST terms
of different pass times and the daily mean air temperature. In practice, the night LST has a very high cor-
relation (up to 0.93) with daily mean air temperature, indicating that the linear relationship between these
variables is so strong that using a typical linear model MLR or PLS is sufficient. However, the correlation
between the day LST and daily mean air temperature is much lower than the correlation with the night
LST. The relationship between them features increases nonlinearly, which can be simulated more accu-
rately using complex models.

When models are trained under the mixed quality situation (S2), in which not all the LST data are of good
quality, especially when the good LST samples alone are not sufficient to build a reliable model fit, complex
models are always recommended regardless of the LST combination, according to the results shown in
section 3.4 (Figures 6b and 8). The obvious differences between complex and simple models under this situa-
tion are considered to be largely attributable to the inherent characteristics of these models. Generally, small
errors in the variables do not greatly affect the model fit. However, LST inputs of extremely poor quality are
bound to introduce more “outliers.” Typical linear regression models, such as MLR or PLS, are more sensitive
to outliers than complex machine learning methods, such as RF or SVR. For example, tree-basedmodels, such
as RF and CR, can alleviate the exceptional effects of outliers by splitting the training samples. It should be
noted that LST outliers can be identified using MLR to some degree, so detecting and removing the outliers
may greatly improve the accuracy in some cases. However, it is not conducted in this study given the great
difficulty of detecting all the possible outliers present in as many as four LST terms and six auxiliary variables.

5. Conclusions

This study proves that reasonably integrating multiple MODIS LST terms can greatly reduce cloud blockage
and simultaneously retain relatively high accuracies. Instead of simply combining the four LST terms, our pro-
posed method optimizes the estimation accuracy depending on data quality, available LST combinations,
and model selection. This method greatly reduced the cloud blockage in the final air temperature product
to a spatial average of only 14% while maintaining relatively high accuracy in most cases, with cross-
validation RMSDs values of approximately 2°C. In addition, it accounted for the effects of LST data quality
by considering different quality situations in a model ranking process and identified the best model for air
temperature estimation under various conditions among the six popular statistical models tested.

Some important implications for practical application can be concluded: (1) night LST is a guarantee of high
accuracy and should always be used, regardless of the model employed or the quality situation; (2) when the
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night LST is available and the model is trained under a good quality situation, simple models (typical linear
regression models, such as MLR or PLS) are recommended; (3) when only the day LST is available, advanced
models (intrinsically nonlinear models, such as BPNN, SVR, RF, or CR) are recommended, regardless of the
quality situation; and (4) when models are trained under a mixed quality situation in which not all the LST
data are of good quality, complex models are always recommended.
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