
International Journal of Applied Earth Observations and Geoinformation 97 (2021) 102295

0303-2434/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Creating 1-km long-term (1980–2014) daily average air temperatures over 
the Tibetan Plateau by integrating eight types of reanalysis and land data 
assimilation products downscaled with MODIS-estimated temperature lapse 
rates based on machine learning 

Hongbo Zhang a,b,c,d,e, W.W. Immerzeel e, Fan Zhang b,f,g,*, Remco J. de Kok e, Sally J. Gorrie h, 
Ming Ye h 

a College of Water Resources & Civil Engineering, China Agricultural University, Beijing, China 
b Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), 100101 
Beijing, China 
c State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China 
d State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China 
e Utrecht University, Department of Physical Geography, PO Box 80115, Utrecht, the Netherlands 
f CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China 
g University of Chinese Academy of Sciences, Beijing, China 
h Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA   

A R T I C L E  I N F O   

Keywords: 
MODIS land surface temperature 
Tibetan Plateau 
Temperature lapse rate 
Reanalysis data 
Spatial downscaling 

A B S T R A C T   

Air temperature (Tair) is critical to modeling environmental processes (e.g. snow/glacier melting) in high- 
elevation areas of the Tibetan Plateau (TP). To resolve the issue that Tair observations are scarce in the TP 
western part and at high elevation, many studies have estimated daily air temperatures by using MODIS land 
surface temperature (LST) and various reanalysis datasets. These estimates are however inadequate for sup
porting high-resolution long-term hydrological simulations or climate analysis due to the high cloud cover, short 
time span or low spatial resolution. To improve the Tair estimation, this study develops a novel machine-learning 
based method that uses the Gradient Boosting model to efficiently integrate observations from high-elevation 
stations with eight widely used air temperature reanalysis and assimilation datasets (i.e., NNRP-2, 20CRV2c, 
JRA-55, ERA-Interim, MERRA-2, CFSR, ERA5 and GLDAS2) downscaled with remote sensing-based temperature 
lapse rates (TLR). This method is used to generate a new dataset of daily air temperature with the 1-km resolution 
for the period of 1980–2014. To overcome the problem that TLR derived from limited stations may be unreliable, 
a new TLR estimation method is developed to first estimate spatially continuous monthly TLRs from MODIS LST 
and then downscale daily mean Tair from eight reanalysis and assimilation datasets to obtain Tair at the 1-km 
resolution using the MODIS-estimated TLRs. The Gradient Boosting (GB) model is selected for integrating the 
eight downscaled Tair and five other auxiliary variables. The models are trained and validated using observations 
from 100 common stations (i.e. China Meteorology Administration stations) and 13 independent high-elevation 
stations (4 on glaciers). The results show that the proposed TLR estimation method can efficiently reduce 
exceptional TLRs in the meantime keeping acceptable downscaling accuracy. The downscaled Tair from JRA-55 
is the best among the eight downscaled datasets followed by ERA-Interim, MERRA-2, CFSR and others. Finally, 
the GB-integrated Tair further outperforms the downscaled JRA-55 Tair with the mean root-mean-squared- 
deviation (RMSD) of 1.7 ◦C versus 2.0 ◦C, especially in high-elevation stations with mean RMSD of 1.9 ◦C 
versus 2.7 ◦C. Both the MODIS-estimated TLR and the high-elevation training observations are demonstrated to 
significantly improve the air temperature estimation accuracy of the GB model in high-elevation stations. This 
study also provides a framework for integrating multiple reanalysis and assimilation temperature data with 
elevation correction in mountainous regions that is not restricted to the TP.  
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1. Introduction 

The Tibetan Plateau (TP) and its surrounding region are considered 
as the Third Pole on the Earth with an average elevation of approxi
mately 4000 m. Due to the high elevation, TP has a warming rate higher 
than the global average, resulting in various severe environmental 
changes such as glacier retreat (Kraaijenbrink et al., 2017; Yao et al., 
2012), permafrost degradation (Cheng and Wu, 2007; Wu and Zhang, 
2008), lake expansion (Zhang et al., 2011; Zhang et al., 2017), and 
increasing river discharge and sediment flux (Zhang et al., 2020). Air 
temperature is the most direct indicator of global warming (Liu and 
Chen, 2000; Pepin et al., 2015), and it is also an important variable for 
investigating the changes and mechanisms of various hydrological and 
ecological processes such as snow or glacier melting (Immerzeel et al., 
2014; Zhang et al., 2015) and photosynthesis (Wu et al., 2012). How
ever, air temperature observations are scarce in TP in particular in high- 
altitude areas due to harsh terrain and weather conditions. There is an 
urgent need to estimate air temperature in the high-altitude areas of the 
TP. 

To overcome the problem of air temperature data scarcity, a variety 
of reanalysis and land data assimilation methods have been developed in 
the last several decades, such as the NCEP/DOE Reanalysis 2 Project 
(NNRP-2) (Kanamitsu et al., 2002), the 20th Century Reanalysis Version 
V2c (20CRV2c) (Compo et al., 2011), the Japanese 55-year Reanalysis 
Project (JRA-55) (Kobayashi et al., 2015), the ERA-Interim (Dee et al., 
2011), the Modern-Era Retrospective analysis for Research and Appli
cations Version 2 (MERRA-2) (Gelaro et al., 2017), the NCEP Climate 
Forecast System Reanalysis (CFSR) (Saha et al., 2010), the Global Land 
Data Assimilation System Version 2 (GLDAS-2) (Rodell et al., 2004) and 
ERA5 (Service, 2017). These efforts have produced various datasets by 
using advanced model and assimilation techniques to efficiently incor
porate observations from multiple sources with consideration of phys
ical relations between multiple types of the observations. In comparison 
with the observations at sparse weather stations, the datasets provide 
spatio-temporally continuous air temperatures estimates at a larger 
scale. 

The air temperature datasets derived from the reanalysis or assimi
lation data need to be corrected for complex terrains in TP, because 
spatial resolutions (ranging from 0.25◦ to 2.5◦) of the derived data are 
too coarse to reflect complex topography in TP. Directly using a block- 
average value for a point position is subject to a large bias due to the 
significant elevation variation within the grid block (Zhou et al., 2018). 
Downscaling is thus needed to achieve a higher horizontal resolution, 
and the resolution of 1–3 km is considered to be satisfactory for complex 
terrains (El-Samra et al., 2018; Karger et al., 2017). For downscaling air 
temperature, the temperature lapse rate (TLR) (i.e., the rate of temper
ature change with elevation) is the most commonly used variable. A 
constant value of 0.0065 ◦C/m has been used for downscaling and 
distributing the air temperature data of CFSR (Li et al., 2014), GLDAS 
and JRA-55 (Wang et al., 2011a) from a coarse grid to a finer grid. 
However, since TLR is not a constant, but varies in space and time in TP 
and its surrounding areas (Li et al., 2013; Wang et al., 2018; Zhang et al., 
2018a), using a constant TLR is unsuitable for downscaling the rean
alysis data in TP such as ERA-Interim (Gao et al., 2017; Gerlitz et al., 
2014). Methods that estimate more accurate TLRs have been developed, 
for instance, by calculating local and monthly TLRs based on neigh
boring stations (Zhang et al., 2015; Zhang et al., 2018b) or using the 
temperature gradient of synoptic data from different pressure levels 
(Gao et al., 2017; Karger et al., 2017). It has been shown that the station- 
based TLR may not be optimal for downscaling when a small number of 
weather stations are insufficient to represent spatial variability at the 
scale of a grid block. Recently, based on the strong correlation and 
consistency between air temperature and remote sensing land surface 
temperature (LST) (Benali et al., 2012; Mutiibwa et al., 2015; Zhang 
et al., 2016a), MODIS LST data have been used for estimating TLR for the 
TP (Wang et al., 2018; Zhang et al., 2018a). The existing methods 

however have not adequately addressed the problems of missing data 
(mainly caused by clouds) and unreliable estimates of TLR (mainly 
resulted from small elevation range among LST pixels), and a more 
efficient TLR estimation method is needed (Wang et al., 2018). 

Another problem related to the reanalysis data is that they lack in
dependent validation data because the reanalysis always assimilates all 
information embedded in observations from meteorological stations 
(Wang and Zeng, 2012; Zhou et al., 2018). These stations are unevenly 
distributed in TP with nearly no stations located in the western part or at 
high elevation of TP. Although several studies have evaluated accuracy 
of NNRP-1, NNRP-2, JRA-55, ERA-Interim (Gao et al., 2017), CFSR, 
GLDAS (Ji et al., 2015; Wang et al., 2016c) or a combination of them in 
TP (Wang and Zeng, 2012; Zou et al., 2014), the evaluation results may 
be biased due to the lack of independent validation observations at high 
elevation. To alleviate this problem, several researchers used observa
tions of low elevation (Wijngaard et al., 2017; Zhou et al., 2015). 
However, excluding high-elevation data may result in low estimation 
accuracy. Zhang et al. (2016a) showed that the root mean squared errors 
of estimated daily air temperature in high-elevation (>4000 m) areas 
increase significantly from 2.1 ◦C to 2.7 ◦C when excluding observa
tional information from high-elevation stations. Given that using mul
tiple reanalysis datasets may improve estimation accuracy due to large 
spread among different datasets (e.g., their seasonal and regional dif
ferences in accuracy) (Mudryk et al., 2015), efforts have been spent to 
integrate several reanalysis datasets such as the combination of ERA- 
Interim, MERRA, NNRP-1 and ERA-40 at a global scale based on inter
polation (Wang and Zeng, 2013) and the ensembles of NNRP-1, ERA- 
Interim, CFSR and others in a glacierized region of Peru (Hofer et al., 
2012). 

In addition to various reanalysis dataset, efforts have been made to 
use remote sensing land surface temperatures to estimate monthly 
(Huang et al., 2017; Xu et al., 2018) or daily (Rao et al., 2019; Zhang 
et al., 2016a; Zhu et al., 2017) air temperatures over the TP in the last 
decade. The studies employed various types of machine learning models 
to improve estimation accuracy. For example, based on the Cubist 
regression model, Rao et al. (2019) recently integrated MODIS daily 
composite LST data with three cloud-free top-of-atmosphere radiation 
products to produce all sky daily average air temperatures of 2002–2016 
with a relatively low root-mean-squared-deviation of 1.9 ◦C. However, 
the short time span of MODIS LST (available after 2000 for TERRA) 
limits their use in practical applications such as long-term hydrological 
simulation and climate analysis. 

To address the problems discussed above, the objectives of the study 
are as follows: (1) developing a more efficient method for estimating 
spatially continuous TLR from MODIS LST; and (2) creating a more 
accurate 1-km daily air temperature datasets during 1980–2014 for the 
TP (especially for high-elevation areas) using a machine learning 
method by integrating eight reanalysis and assimilation datasets 
downscaled with the newly developed TLRs. In comparison with pre
vious researches on air temperature estimation at relatively high spatial 
resolutions (e.g., 1-km), our study uses multiple reanalysis air temper
ature datasets rather than only remote sensing LST. As a result, our 
product has a larger time span and is intrinsically cloud-free. In addition, 
using the MODIS-estimated TLR for downscaling can improve accuracy 
of the input reanalysis temperatures for the machine learning model. 
Our study also uses the observations from 13 independent high- 
elevation stations and the observations provide reliable training infor
mation from high-elevation areas. The combined use of MODIS- 
estimated TLR and high-elevation observations improves accuracy of 
our air temperature estimation. To the best of our knowledge, this study 
is the first attempt to estimate long-term daily average temperatures at 
the 1-km resolution using multiple downscaled reanalysis datasets based 
on machine learning techniques. The rest of the paper is organized as 
follows: Section 2 describes the data used in this study including the 
station observations and reanalysis datasets; Section 3 introduces the 
methods of estimating TLR from MODIS LST, using the estimated TLR 
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for downscaling the eight reanalysis datasets, and integrating the 
downscaled air temperature datasets using the machine-learning model; 
Section 4 presents and evaluates the results with a discussion on un
certainty of the MODIS-estimated TLR and the new air temperature 
dataset. 

2. Data 

2.1. Ground observations 

This study uses two kinds of observations, the daily mean air tem
perature and the sub-daily air temperature. The daily mean air tem
perature observations were collected during 1980–2014 from 100 
meteorological stations (Fig. 1) maintained by China Meteorology 
Administration (CMA). These stations hereinafter are referred to as the 
“common stations” (CS), and most of them are located in urban areas 
within the TP with an average altitude of about 3300 m. The sub-daily 
air temperature observations were collected from 13 automatic 
weather stations (Fig. 1) that were set up in the field over different land 
covers. These stations are referred to as the “high-elevation stations” due 
to their higher elevations (Zhang et al., 2018a), and the detailed de
scriptions of the stations are listed in Table 1. All the air temperature 
measurements mentioned above are made at a height of about 2 m above 
land surface. It is believed that all or majority of the common stations 
data have been incorporated into the assimilation of the widely used 
reanalysis datasets such as ERA-Interim, MERRA and CFSR (Wang et al., 
2011b). The data of the 13 high-elevation stations are used in this study. 
It should be noted that three of the stations are at the elevation higher 
than 5,000 m, and that four are on glaciers. All the temperatures of high- 
elevation stations are measured sub-daily with frequencies varying from 
10 min to 30 min, and finally averaged to the daily time interval. 
Although most of high-elevation stations are near to common stations in 
complex terrains with steep slopes, their elevations are higher than the 
neighboring common stations. For investigating the consistency be
tween the observation from each high-elevation station and its nearest 
common station, a correlation analysis of data series is conducted, and 
the results show that the high-elevation station data are reliable with a 
correlation coefficient larger than 0.91. Other means of data quality 
control have been conducted using multiple variables including clima
tological limits, spatial consistency and temporal coherency by the CMA 

(for common stations) (Zhou et al., 2017) or data providers (for high- 
elevation stations), to manually check and remove obvious outliers. 
Following a number of air temperature estimation studies at the 1-km 
scale (Xu et al., 2014; Zhang et al., 2016b; Zhu et al., 2013), the sta
tion observations are considered as the ground truth for the 1-km pixel, 
within which the corresponding stations are located. This may introduce 
certain errors in several situations such as on the glaciers with complex 
terrains and mixed land covers (Zhang et al., 2018b), and a discussion on 
the errors is given in Section 4.3.4. 

2.2. Reanalysis datasets 

Eight reanalysis and assimilation datasets are used in this study 
including NNRP-2, 20CRV2c, JRA-55, ERA-Interim, MERRA-2, CFSR, 
GLDAS and ERA5. A summary description of them is listed in Table 2. 
Except for the NNRP-2 dataset that is originally for daily data, all the 
reanalysis datasets are obtained by averaging sub-daily data to daily 
data. Table 2 also shows that the eight datasets have different time 
spans. The time period of 1980–2014 is selected for use in this study, 
since the datasets of this period give the most overlap during that period. 
The reanalysis datasets were produced by using advanced data assimi
lation schemes such as the three-dimensional variational (3DVar) data 
assimilation (e.g. NNRP-2, CFSR and MERRA-2) or the even better four- 
dimensional variational (4DVar) data assimilation (e.g. JRA-55, ERA- 
Interim and ERA5). The aim of the reanalysis is to solve the complex 
problems of integrating all kinds of information from various sources 
including the previous forecasts, error uncertainty, physical laws and 
the observations from both stations and satellites (Barker et al., 2004). 
For instance, the ERA-Interim dataset incorporates air temperature ob
servations from stations to improve soil moisture estimation (Wang and 
Zeng, 2012). Due to complexity of the reanalysis, it is difficult to 
determine whether the observations from the 13 high-elevation stations 
were used in the reanalysis. However, it is highly likely that the obser
vations have not been used by the reanalysis data. 

2.3. MODIS LST and other auxiliary data 

Four kinds of observations can be obtained from MODIS per day 
including TERRA daytime (10:30 local time), TERRA nighttime (22:30 
LT), AQUA daytime (13:30 LT) and AQUA nighttime (1:30 LT). 

Fig. 1. Elevation map of the Tibetan Plateau (TP) and locations of the 100 common stations (blue squares) and 13 high-elevation stations (yellow triangles). The 
locations of several high-elevation stations are adjusted slightly for a better visualization to avoid overlapping in the plot, and their exact locations are listed in 
Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Comparison of their performances in estimating TLR shows that TERRA 
nighttime LST is the best for estimating monthly TLR on the TP (Zhang 
et al., 2018a). This is attributed to the fact that TERRA LST shows higher 
validation accuracy than AQUA LST over the TP (Min et al., 2015; Yu 
and Ma, 2011; Zhang et al., 2018b). In addition, comparing with MODIS 
nighttime LST, MODIS daytime LST is more susceptible to the pixel-scale 
heterogeneity (Zhang et al., 2016b). MODIS TERRA daily land surface 
temperature data (MOD11A1) version 6 during 2002–2014 with about 
1-km resolution are thus obtained for calculating the TLR at each 
reanalysis grid block. Considering the data quality and availability, only 
LST values with quality control (QC) flag <3 (i.e., the average error of 

LST is ≤3 K) are used. MODIS annual land cover type data (MOD12Q1) 
version 6 during the same period are also used for creating the water 
mask and providing the land cover information of station locations. All 
the elevation information of MODIS pixels and the reanalysis grid blocks 
are calculated based on the 30 arc second (~1km) resolution elevation 
data created by averaging the original 3 arc second (~90 m) Shuttle 
Radar Topography Mission (SRTM) data. The elevation, longitude and 
latitude information of all the 113 stations are obtained from CMA or the 
individual data provider. In addition, the gridded specific humidity (SH) 
derived from CFSR are used for analyzing the spatial and temporal 
patterns of TLR, which were found to show higher accuracy in the TP 
than ERA-Interim, MERRA and GLDAS (Wang and Zeng, 2012). The 
multiyear average snow cover days (SCD) are calculated from a seamless 
daily snow cover dataset combined from MODIS daily snow cover data 
and Interactive Multisensor Snow and Ice Mapping System (IMS) that 
show relatively good accuracy on the TP (Yu et al., 2016). 

3. Methods 

We create a new 1-km daily mean air temperature dataset for the 
period of 1980–2014 by following the three steps shown in Fig. 2. In the 
first step, a new method for estimating spatially continuous, multiyear 
average monthly TLR from MODIS LST is developed with consideration 
of standard error of elevation (SDE) (Fig. 2a). In the second step, the 
MODIS-estimated TLRs are used for downscaling air temperature of 
eight reanalysis datasets, and accuracy of the eight downscaled datasets 
is also evaluated and compared (Fig. 2b). In the third step, the down
scaled 1-km air temperatures from eight reanalysis datasets are further 
integrated together with five other auxiliary variables (i.e., latitude, 
longitude, elevation, SCD and Julian day) by the best machine learning 
model among Cubist, Gradient Boosting and Random Forests (Fig. 2c). 
The detailed descriptions of the three steps are given below. 

3.1. Estimating spatially continuous monthly TLR from MODIS LST 

Since TLR is only reliable for local areas, several studies have used 
local samples within a grid block to calculate the grid-based TLR (Wang 
et al., 2018; Zhang et al., 2018a). However, the average cloud cover of 
daily MODIS/TERRA nighttime LST is as high as ~40% for the TP 
(Zhang et al., 2016a). This often renders insufficient valid LST pixels/ 
samples for producing a reliable TLR estimate due to either missing data 
or small elevation changes within a defined area (Wang et al., 2018). To 
resolve this problem, a new method for estimating TLR from MODIS LST 
is developed, and Fig. 3 is the diagram of the method implemented in the 
following three steps: 

(1) Step 1: The multiyear average, monthly MODIS LSTs are calcu
lated by temporally averaging all the valid LST values for each 1- 
km MODIS LST pixel during 2002–2014. To remove the effects of 
water, if the 1-km LST pixels contain one or more 500 m pixels 

Table 1 
Descriptions of the high-elevation automatic weather stations.  

Station Longitude (◦) Latitude (◦) Elevation (m) Land cover Frequency Available period 

H01 86.95 28.37 4276 Grasslands 30 min 2005.10.1–2008.6.27 
H02 90.97 30.78 4730 Grasslands 10 min 2005.10.1–2008.6.26 
H03 75.06 38.41 3650 Grasslands 30 min 2009.10.23–2012.7.18 
H04 75.02 38.29 4400 Barren 30 min 2005.6.4–2006.9.14, 2009.10.29–2011.4.13 
H05 75.24 38.29 4900 Barren 30 min 2003.5.18–2005.6.9 
H06 94.74 29.76 3326 Grasslands 10 min 2007.1.1–2009.9.26 
H07 94.61 29.6 4390 Open Shrublands 30 min 2005.8.19–2006.7.18, 2007.1.3–2008.5.14 
H08 94.71 29.66 4390 Woody Savannas 30 min 2006.11.6–2009.8.1 
H09 79.7 33.39 4264 Barren 30 min 2009.10.27–2012.8.22 
H10 96.93 29.25 4804 Glacier 10 min 2012.1.5–2012.12.31 
H11 75.07 38.29 5900 Glacier 10 min 2011.7.29–2012.7.9 
H12 92.08 33.07 5621 Glacier 10 min 2009.1.1–2009.12.31 
H13 90.65 30.47 5800 Glacier 10 min 2012.1.1–2012.12.31  

Table 2 
Description of eight reanalysis and land data assimilation products.  

Dataset Full Name Available 
time 

Spatial 
resolution 
(Lon/Lat) 

Temporal 
resolution 

NNRP-2 NCEP/DOE 
Reanalysis 2 Project 

1979–Current 2.5/2.5 daily 

20CRV2c 20th Century 
Reanalysis Version 
V2c 

1851–2014 2.0/2.0 6-hourly 

JRA-55 Japanese 55-year 
Reanalysis Project 

1958–Current 1.25/1.25 6-hourly 

ERA- 
Interim 

Interim version of 
European Centre for 
Medium-Range 
Weather Forecasts 
(ECMWF) 
atmospheric 
reanalyses of the 
global climate 

1979–Current 0.75/0.75 6-hourly 

MERRA- 
2 

Modern-Era 
Retrospective 
analysis for Research 
and Applications, 
Version 2 

1980–Current 0.625/0.5 3-hourly 

CFSR NCEP Climate 
Forecast System 
Reanalysis 

1979–2010 0.5/0.5 hourly 

#CFSR-2 NCEP Climate 
Forecast System 
Version 2 

2011–Current 0.5/0.5 hourly 

GLDAS-2 Global Land Data 
Assimilation System 
Version 2 

1948–2010 0.25/0.25 3-hourly 

*GLDAS- 
2.1 

Global Land Data 
Assimilation System 
Version 2.1 

2001–Current 0.25/0.25 3-hourly 

ERA5 Fifth generation of 
ECMWF atmospheric 
reanalyses of the 
global climate 

1979–Current 0.25/0.25 hourly  

# CFSR-2 is used only for 2011–2014 for extending the CFSR data. 
* GLDAS-2.1 is used only for 2011–2014 for extending the GLDAS-2 data. 
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that are typed as water body from MCD12Q1 dataset, the LST 
pixels are removed from calculation. For reducing the bias due to 
high cloud blockage, only the pixels with temporal coverage 
greater than 1/3 are included in the calculation of monthly TLR. 
The calculation builds a linear regression between multiyear 
monthly average LSTs and elevations within each reanalysis grid 
block via 

LSTm = − a × Z+ b (1)   

where, LSTm is the multiyear monthly average LST of each 1-km 
MODIS pixel, Z is the pixel elevation, and a and b are regression 
coefficients. The slope, a, is taken as the MODIS-estimated TLR, 
called “original TLR”. For ERA5 with the spatial resolution of 0.25◦, a 
reanalysis grid block contains about 900 1-km MODIS LST pixels. 
There are always many “exceptional TLRs” present in the original 
TLRs; the “exceptional TLRs” are defined as those with absolute TLR 
values greater than 0.015 ◦C/m based on the fact that TLR generally 
cannot be steeper than 0.015 ◦C/m according to numerous related 
studies (Kattel et al., 2015; Li et al., 2013; Rolland, 2003). The 
exceptional TLRs are dealt with in the next step described below. In 
addition to exceptional TLRs, there is also a problem of data missing. 
If the number of valid LST pixels within a reanalysis grid block is less 
than 4, its TLR is considered missing. The missing data account for 
about 10% of the original TLRs.  
(2) Step 2: For automatically removing exceptional TLRs and filling 

in the missing data, a dynamic checking procedure is conducted 
by applying two types of statistic index to all the valid 1-km LST 
pixels within a reanalysis grid block. The statistics are the stan
dard deviation of the elevation change (SDE) and the correlation 
coefficient (R) between LST and elevation. To examine the reli
ability of the estimated TLRs, an index, called “α”, is firstly 
defined as the percentage of exceptional TLRs in all the original 
TLRs. Index α is used here as an error rate and we hypothesize 
that the exceptional TLRs are resulted from “inapplicable” LST/ 
elevation samples within the reanalysis grid. The “inapplicable” 
LST/elevation samples may be caused by a low correlation 

between LST and elevation or by an exceptional TLR due to a 
small elevation range. For example, both Wang et al. (2018) and 
Zhang et al. (2018b) indicate that a relatively high correlation 
coefficient between temperature and elevation should be ob
tained for a reliable TLR estimation. Huld and Pascua (2015) 
point that the TLRs are invalid it they are estimated from the 
reanalysis grid with elevation range less than 200 m. Thus, it is 
critical to ensure that the samples for TLR calculation are “good” 
enough, meaning that the correlation between LST and elevation 
should be adequately strong and that the elevation change should 
be sufficiently large. Despite that the definition of R is clear, the 
variation degree of elevation can be measured using either SDE or 
elevation range (ER) (i.e., the maximum elevation – the minimum 
elevation). The three statistical parameters, i.e., correlation co
efficient (R) between LST and elevation, SDE and ER, are 
compared in the following way: for each candidate parameter, 
detailed sensitivity tests are conducted by changing the thresh
olds of them with the ranges of 0.00–1.00, 0–300 m and 0–300 m 
for R, SDE and ER, respectively. Within the ranges, the thresholds 
are changed at the steps of 0.01, 1 m and 1 m for R, SDE and ER, 
respectively. Selection of the parameter and the corresponding 
threshold values is determined by checking the response of α. The 
optimal parameter should give small enough α (which is 
considered less than 1% here) with minimum loss of samples. The 
results based on all original TLRs from ERA5 grids (the number of 
samples is as large as ~220,000) are shown in Supplementary 
Fig. S1. The results suggest that, although increasing the thresh
olds of R, SDE or ER decreases α gradually from the initial value of 
~14%, the decreases are different for different statistics. If we 
want to make α less than 1%, R needs to be ≥0.88. This however 
makes the percentage of remaining samples greatly reduced to 
less than 16%, which cannot be acceptable (Supplementary 
Fig. S1a). By contrast, SDE and ER are better in that the remaining 
samples are still as high as ~63% and ~61%, respectively, when 
α becomes less than 1% (Supplementary Fig. S1b). Because of the 
higher percentage of remaining samples and the higher sensi
tivity to α, SDE is chosen as a checking parameter. It should be 

Fig. 2. Flow chart describing the three main parts of this study including estimating the multiyear average monthly TLR (a), downscaling 8 types of reanalysis 
datasets using the MODIS-estimated TLR (b), and integrating the downscaled data to create a new long-term, 1-km, daily air temperature dataset (c). Lat: latitude; 
Lon: longitude; SCD: multiyear average annual snow cover days. 
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noted that, since TLR is only reasonable when the correlation 
between temperature and elevation is relatively high, R is addi
tionally constrained to be larger than 0.5. Supplementary Fig. S1c 
shows that even when R is constrained to be >0.5, SDE is still very 
efficient, in that α starts being less than 1% when SDE increases to 
~60 m. Thus, the combined thresholds of SDE > 60 m and R > 0.5 
are used here. The same tests are conducted for the other seven 
types of reanalysis datasets, and similar results are obtained, 
although their optimal SDE thresholds are smaller than 60 m. 
Then, for both the situations of missing data and those not 
satisfying the thresholds of SDE and R, more LST/elevation 
samples from four nearest neighboring reanalysis grid blocks are 
added for TLR calculation and checking. If the TLR is still missing 
or the criteria of SDE and R are not met, another four nearest 
neighboring grid blocks are added. This process continues until a 
reliable TLR is obtained or the added grid blocks reach the 
maximum distance to the original grid block, which is defined as 

2◦ based on our previous studies (Zhang et al., 2018a; Zhang 
et al., 2018b).  

(3) Step 3: The final step is to fill the remaining missing TLRs by 
borrowing values from the nearest valid grid TLR of other rean
alysis datasets with similar resolutions which are already devel
oped in Step 2. Basically, this process follows the order of 
similarity in the grid sizes of reanalysis data. For example, if an 
ERA5 grid (0.25◦) has a missing TLR, it will take the TLR value 
from the nearest GLDAS grid (0.25◦). If the TLR is still missing, 
then it moves to the nearest CFSR grid (0.5◦) to check whether a 
valid TLR exists. By that analogy, most of the missing data can be 
filled in with relatively reliable TLRs. After this process, the 
missing TLRs only account for less than 1% and are further 
interpolated using the inverse distance weighted (IDW) method 
based on four nearest valid TLRs. Finally, the spatially continuous 
TLR dataset is created, and its spatiotemporal evaluation is 
further conducted by comparing it with multiple meteorological 
variables and other related studies. 

Fig. 3. Flow chart describing how TLRs are estimated from MODIS LST based on dynamic SDE checking. SDE means the standard deviation of elevations. R means 
correlation coefficient. RA means reanalysis. 
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3.2. Application of the MODIS-estimated TLR for downscaling reanalysis 
datasets 

Using the MODIS-estimated TLRs, the original gridded air tempera
ture from all the eight reanalysis and assimilation datasets with large 
resolutions of 0.25–2.5◦ are downscaled to 0.0083◦ (~1-km) pixel. This 
process involves two procedures including the (horizontal) weight 
calculation and the (vertical) elevation correction (Zhang et al., 2018a). 
The correction uses the weights estimated using bilinear (BIL) (Brace
girdle and Marshall, 2012; Quiquet et al., 2018; Wang et al., 2016b) or 
IDW (Jarvis and Stuart, 2001; Stahl et al., 2006; Zhang et al., 2013) 
interpolation methods. A total of six interpolation schemes are tested 
here. In the first scheme, called “ORG”, the 1-km pixel value is directly 
assigned with the original grid value without weight calculation or 
elevation correction. In the second scheme, called “BIL”, the original 
values of the nearest 4 neighboring grids are interpolated to the location 
of the 1-km pixel using the bilinear method. The third scheme, called 
“IDW”, is similar to BIL but uses the IDW interpolation. In the fourth 
scheme, called “ORG + TLR”, the original grid value is directly corrected 
from the average elevation of the grid to the 1-km pixel elevation using 
TLR. In the fifth scheme, called “BIL + TLR”, the original values of the 4 
nearest neighboring grids are all firstly corrected from their grid average 
elevations to the elevation of 1-km pixel and then interpolated to the 
location of 1-km pixel using the bilinear method. The sixth scheme, 
called “IDW + TLR”, is similar to “BIL + TLR” but uses IDW for weight 
calculation. 

The six schemes are then compared with respect to downscaling 
accuracy for all the eight datasets, and the best scheme is selected. The 
downscaling accuracy is measured by using the root mean square de
viation (RMSD) between downscaled data and station observations ac
cording to multiple air temperature evaluations (Benali et al., 2012; Fu 
et al., 2011; Zhang et al., 2016a). As mentioned before, such evaluations 
are conducted at both common stations and high-elevation stations for 
obtaining more reliable results. 

3.3. Integrating the downscaled air temperature datasets for creating a 
long-term 1-km data product over the TP using machine learning models 

In this section, the downscaled air temperatures are further inte
grated to create a 1-km daily mean air temperature data product of 
1980–2014 over the TP. 

3.3.1. Machine learning models 
Machine learning methods are used for integrating downscaled air 

temperatures from the eight reanalysis and assimilation datasets, 
because of the wide applications and good performances of the methods 
in air temperature estimations (Noi et al., 2017; Rao et al., 2019; Xu 
et al., 2018; Zhang et al., 2016a). A total of 13 variables are selected as 
predictors including the downscaled air temperatures from ERA5, 
GLDAS, CFSR, MERRA-2, ERA-Interim, JRA-55, 20CRV2c and NNRP-2 
as well as longitude, latitude, Julian day (i.e. day of year), SCD and 
elevation. 

We tested and compared three types of machine learning models 
including Cubist regression (CR), random forests (RF) and gradient 
boosting (GB), which all use ensemble methods and decision trees. 
Although CR and RF have been used for daily air temperature estimation 
and the three models have been all compared for estimating monthly air 
temperatures (Noi et al., 2017; Rao et al., 2019; Xu et al., 2018; Zhang 
et al., 2016a), GB has not been used for estimating daily air temperature 
on the TP. In comparison with monthly air temperature, daily air tem
perature is more useful to hydrological or climate modeling that needs 
daily inputs. However, estimating daily air temperature is more difficult 
than estimating monthly air temperature, which is evidenced by re
ported estimation accuracy. For instance, the estimation accuracy 
(RMSD) over the TP for monthly air temperature is mostly clustered 
around 1.0 ◦C (Huang et al., 2017; Xu et al., 2018; Zhu et al., 2019) 

while that for the daily is generally about 2.0 ◦C (Rao et al., 2019; Zhang 
et al., 2016a; Zhu et al., 2013). In addition, estimating daily air tem
perature is more computationally expensive, since the number of sam
ples used for estimating daily air temperature is significantly larger than 
that for the monthly air temperature estimation. 

The three methods all have several parameters that can be tuned. 
Developed by Quinlan (2001), CR can create a number of committee 
rule-based models to compensate the predictions from each other or 
make use of nearest neighbor training points to improve the final pre
dictions. This makes that CR generally has two parameters: committees (i. 
e., the number of committee rule-based models) and neighbors (i.e., the 
number of nearest neighbor training points). RF is proposed by Breiman 
(2001) and generally creates many random trees, with each tree model 
trained using bootstrap sampling. To alleviate the correlation problem 
of tree models with similar structures, RF randomly selects several 
predictor variables for each splitting of the model tree. Thus, ntrees (i.e. 
number of random trees) and mtry (i.e. the number of randomly selected 
predictors) are the two tuning parameters. GB (Friedman, 2001, 2002) is 
a framework that can combine a number of “weak prediction models” 
for an ensemble prediction. It corrects the errors from a prior model 
through a number of iterations and create a new model combination. 
The situation for GB is more complex owing to the large number of 
parameters. The six most widely used parameters are considered here: 
eta, gamma, max_depth, min_child_weight, subsample and colsample_bylevel 
which are all booster parameters. These parameters are repeatedly 
tuned for improving air temperature estimation accuracy in the mean
time to avoid the problem of overfitting. The detailed definitions of 
these parameters can be found in Chen et al. (2015). 

All of the three types of models were calibrated in accordance with 
their different model features and the suggestions given in literatures 
such as Kuhn and Johnson (2013) and Zhang et al. (2016a). According to 
the different computing burden, the parameters for CR, RF and GB were 
finally determined based on the 10-fold, 5-fold and 100-fold cross- 
validations, respectively. The tuning ranges, steps and the final selec
tion of model parameters are listed in Table 3. Other parameters are 
determined manually based on our experience. For RF, the parameter of 
ntrees is fixed to 500 which is also used by Zhang et al. (2016a). Using 
larger values increases computational cost but with negligible 
improvement in accuracy, For GB, the parameter of nrounds (meaning 
the maximum number of iterations) is fixed to 500 prior to calibration. 
The three machine learning methods were implemented using the R 
packages “Cubist”, “randomForest” and “xgboost”, respectively. 

3.3.2. Model comparison and evaluation methods 
After the calibration, the performances of the three models are 

compared by using the widely used leave-one-out cross-validation 
method. For each station, the machine learning model is trained by the 
observations from all the other stations and the RMSD and mean abso
lute deviation (MAD) are calculated using the predictions (from the 

Table 3 
Parameter tuning of Cubist regression, Random forests and Gradient Boosting 
models.  

Model Parameter Tuning 
Range 

Tuning 
Step 

Selected 
Value 

Cubist committees 1–100 10 80 
neighbors 1–9 3 9  

Random 
Forests 

mtry 1–12 1 7  

Gradient 
Boosting 

eta 0.01–0.1 0.01 0.03 
colsample_bylevel 0.25–1 0.25 0.5 
gamma 0–1 0.05 0.05 
subsample 0.5–1 0.1 1 
max_depth 2–10 2 6 
min_child_weigtht 1–30 5 5  
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trained model) and observations for this station. The final measurements 
of validation accuracy is averaged from all the station-based RMSDs and 
MADs. The best model with the highest validation accuracy is selected 
for producing the final air temperature dataset. 

3.3.3. Evaluation of the produced air temperature dataset 
The leave-one-out cross-validation accuracy from the best machine 

learning model is considered as the general accuracy of the estimated air 
temperature, and this is evaluated by the comparison with the best 
downscaled reanalysis dataset under the same condition. After the final 
air temperature dataset is created using the selected machine learning 
model, the new product is further evaluated by calculating the pixel- 
based annual temperature trends. The trend of each pixel is calculated 
based on linear regression between the annual average temperatures of 
the pixel and the time series (i.e. years 1980–2014) and the significance 
level (P-value) is calculated based on t-test. The error distributions are 
possibly affected by land cover, elevation or data independence, which 
is discussed below. 

4. Results and discussions 

4.1. The spatially continuous monthly TLR 

4.1.1. The performance of the proposed method for TLR estimation based 
on MODIS LST 

The performance of the new method is evaluated by estimating TLR 
of July, when the problem of data missing is the most serious, for the 
ERA5 grid, and the results are shown step by step in Fig. 4. Fig. 4a shows 
the TLRs calculated directly from multiyear average monthly MODIS 
LST without additional procedures. This results in many exceptional 
values with the maximum absolute TLR reaching 0.68 ◦C/m which is 
normally impossible. The calculation also results in a large number of 
missing data, which could largely limit its applicability. Lots of excep
tional values are around large water bodies. After removing the LST 
pixels with water (Fig. 4b), some exceptional values disappear, with the 
maximum absolute TLR decreasing to 0.36 ◦C/m, which is still unrea
sonable. At the same time, more missing data appear due to the water 
mask. However, after checking SDE iteratively and including more 
neighboring grids within the threshold distance (Fig. 4c), the number of 
exceptional TLRs is greatly reduced with the maximum absolute TLR 
quickly decreasing to 0.028 ◦C/m, especially for the Qaidam basin in the 
northeastern TP where about 1/3 of the basin is covered with deserts 
and elevation variation is relatively small. It is also noted that the 
missing data are reduced by ~84%. After filling missing values with 
those from other reanalysis grids with similar resolutions, all the missing 
data are eliminated, and the new results have reasonable ranges 
(Fig. 4d). The performances of the new method in estimating TLRs of all 
the other 11 months and seven reanalysis datasets are similar, and thus 
not shown here. 

4.1.2. Evaluating the spatial and seasonal pattern of MODIS-estimated 
TLRs across the TP 

The spatially continuous TLRs in January for the eight reanalysis and 
assimilation datasets are shown in Supplementary Fig. S2. The spatial 
patterns are generally consistent among different grids, e.g., all of them 
showing steeper TLRs in the southeastern and northwestern parts in 
January. Similar results are obtained for all the other 11 months, and 
thus not shown here. However, the influence of grid resolution is 
observed that the TLR gradually becomes complex as the grid size de
creases, with the most obvious evidence of more negative TLRs. In 
addition, the coarser resolution also shows a smoothing effect that the 
range (i.e., maximum – minimum) of TLR gradually decreases from the 
largest 0.033 ◦C/m (ERA-5) to the smallest 0.006 ◦C/m (NNRP-2). For 
simplicity, the following analysis of this section is based on ERA5 grid 
that has the highest resolution among the eight datasets. 

In order to evaluate the spatial patterns of the MODIS-estimated 

TLRs, the whole TP is divided into five sub regions including North
western TP, Central TP, Northern TP, Southeastern TP and Southern TP 
(Fig. 5). The spatial pattern of TLRs is very complex, and shows obvious 
seasonal variations determined by multiple factors. Humidity is a major 
factor, because the TLR becomes steeper from the northwest to the 
southeast with a spatial pattern similar to that of specific humidity 
shown in Fig. 5. This is particularly true for summer and autumn. In 
summer, the monsoon precipitation is mainly around the southeastern 
and southern TP and decreases towards the northwest, resulting in a 
similar humidity pattern. It has been demonstrated that more humid 
conditions can produce shallower TLRs due to the fact that the rising 
moist air tends to cool more slowly because of the released latent heat 
upon condensation (Kattel et al., 2017; Zhang et al., 2018a). Thus, the 
TLRs of southeastern and southern TP are obviously shallower, and the 
steepest TLRs are concentrated in the Qaidam basin with a large desert. 
The spatial pattern of TLR in autumn is similar to that in summer due to 
the similar pattern of humidity but with smaller differences among 
different regions caused by the reduced precipitation in the southeastern 
and southern TP. However, the underlying surface conditions, especially 
the snow cover and the effect of temperature inversion, can also be 
important disturbing factors in spring and winter. In spring, both the 
northwestern and southeastern TP have more snow cover. The high al
bedo of snow causes lower temperatures at high elevations, leading to 

Fig. 4. Effects of the proposed method by showing the spatial distribution of 
the TLRs of July from the original TLRs (a), reprocessing by removing water 
pixels prior to TLR calculation (b), further processed based on SDE checking (c), 
and finally filling the missing data by borrowing values from other reanalysis 
grids with similar resolutions (d). 
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steeper TLRs. In winter, there are also two steep-TLR regions, including 
the northwestern and southeastern TP. Again, their higher snow cover 
frequencies are likely the cause of this. It may be surprising that the 
southern TP shows steeper TLR than the northern TP (Fig. 5e). Even 
higher specific humidity and less snow cover are found in the southern 
part, but it should be noted that there are a number of negative TLRs 
possibly caused by small elevation ranges or the inversion effect in 
northern TP, which largely balance the steep positive values. Most of the 
negative TLRs are found in the grids with a relatively small standard 
deviation of elevation indicating smaller elevation variation. This was 
also found by Wang et al. (2018). In addition, temperature inversion is a 
common phenomenon in winter in high-elevation areas where temper
ature may increase with elevation when the cold air sinks and pools in 
the valley, resulting in the coldest locations being the valley bottom 
(Minder et al., 2010; Rolland, 2003). 

The MODIS-estimated TLRs are also compared with those obtained in 
previous studies around the TP. As for the magnitude of monthly TLRs, 
few cases with large absolute TLRs greater than 0.015 ◦C/m and even 
0.01 ◦C/m are generated. This was also found by Jiang et al. (2016) and 
Li et al. (2013), who used CMA stations all over China including those in 
the TP. The negative TLRs have also been observed in some areas in TP 
or its neighboring areas (Jiang et al., 2016; Li et al., 2013), including the 
Qaidam basin (Wang et al., 2018). This phenomenon was noted to occur 
mostly in winter, which is consistent with this study. Since most studies 
use seasonal TLRs for temporal analysis, Supplementary Fig. S3 plots the 
seasonal patterns of TLRs, taken directly from the literature, reprocessed 
by averaging monthly values. These are compared with the MODIS- 
estimated TLRs. For northwestern TP, our results are consistent in 
both the magnitude and the pattern with a recent study (Sun et al., 2018) 
that uses not only nine common CMA stations but also nearby six high- 

elevation field stations. Due to the relatively high snow cover and low 
humidity (Fig. 5), TLR is the steepest in spring rather than in winter, 
which is possibly affected by inversion effects. The seasonal patterns of 
MODIS-estimated TLR are very similar in southeastern and southern TP, 
and are the steepest in spring and the shallowest in summer. The pattern 
in southeastern TP is different from that of Jiang et al. (2016), who 
found that winter has the steepest TLR. This may be due to the unequal 
definition of southeastern TP, and that there are a number of negative 
TLRs in winter in this study (Fig. 5d). The situation is a little complex for 
southern TP, i.e., the Himalayan regions where the southern and 
northern slopes are found to have different seasonal patterns (Kattel 
et al., 2013; Kattel et al., 2015). The biggest difference occurs for the 
winter TLR (Supplementary Fig. S3e), and the true conditions may be 
between our results and those of Immerzeel et al. (2014). While it is 
surprising that both the central and northern TP show totally different 
seasonal patterns with the steepest TLR in summer and the shallowest 
TLR in winter, these are also reported by Jiang et al. (2016) and Li et al. 
(2013). However, it should be noted that their humidity and snow cover 
are relatively low throughout the year indicating much weaker effects of 
them on the seasonal cycle (Fig. 5). Solar radiation may be responsible 
for the summer maximum in TLR due to the fact that strong surface 
heating from increasing solar input can produce steeper lapse rates in 
dry and warm environments (Blandford et al., 2008; Pepin et al., 1999). 
The winter minimum TLR is resulted from the combined effects of 
reduced solar radiation, lower temperature and the frequent cold air 
drainage, which can also be seen from the negative TLRs in the region 
(Fig. 5). Several studies have also analyzed the patterns of TLR in China 
and the TP, but their results are not used for comparison here due to the 
different definitions of sub-regions (Guo et al., 2016; Li et al., 2015). In 
summary, the spatial and seasonal patterns of MODIS-estimated TLRs 

Fig. 5. Spatial distribution of seasonal TLRs (left), specific humidity (middle), snow cover days (right) and their averaged values in the 5 regions for 4 seasons 
(bottom). “NW”: Northwestern TP; “C”: Central TP; “N”: Northern TP; “SE”: Southeastern TP; “S”: Southern TP. SH: specific humidity. 
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are considered to be reasonable. 

4.2. Downscaled reanalysis data and evaluation of the MODIS-estimated 
TLR 

4.2.1. Comparison of different downscaling schemes 
Supplementary Fig. S4 shows accuracy comparison of the six 

downscaling schemes among all the eight reanalysis and assimilation 
datasets. The three schemes using TLR (with mean RMSD of 3.2 ◦C) 
show obviously better accuracy than those without using TLR (with 
mean RMSD of 5.3 ◦C), indicating that the use of TLR can significantly 
improve the downscaling accuracy for all the eight reanalysis datasets. 
The ORG + TLR method (with mean RMSD of 3.3 ◦C) is slightly inferior 
to the other two schemes using TLR, but the BIL + TLR method (with 
mean RMSD of 3.1 ◦C) and the IDW + TLR method (with mean RMSD of 
3.1 ◦C) have comparable performance. It indicates that the effect of 
weight calculation is less important than elevation correction using TLR 
which is also found by Zhang et al. (2018a). The IDW + TLR method is 
selected as the downscaling scheme here, because it shows similar ac
curacy with BIL + TLR and has higher computational efficiency. 

4.2.2. Comparison of the downscaled eight reanalysis and assimilation 
datasets 

The accuracy comparison of all the eight downscaled reanalysis and 
assimilation datasets are shown in Fig. 6a. JRA-55 (mean RMSD: 2.0 ◦C) 
shows the highest accuracy followed by ERA-Interim (mean RMSD: 
2.1 ◦C), MERRA-2 (mean RMSD: 2.3 ◦C), CFSR (mean RMSD: 3.3 ◦C), 

ERA5 (mean RMSD: 3.4 ◦C), 20CRV2c (mean RMSD: 3.5 ◦C), NNRP-2 
(mean RMSD: 4.3 ◦C) and GLDAS (mean RMSD: 4.6 ◦C). The results 
based on all stations (i.e., both common and high-elevation stations) are 
slightly different from those based on high-elevation stations. For vali
dation based on high-elevation stations, MERRA-2 is the best, and the 
accuracy from JRA-55 (mean RMSD: 2.68 ◦C), ERA-Interim (mean 
RMSD: 2.69 ◦C) and MERRA-2 (mean RMSD: 2.62 ◦C) are nearly the 
same. Due to the negligible accuracy difference among the best three 
datasets, following Zhang et al. (2016a), we conducted a multiple 
comparison based on a paired unequal variances t-test with Bonferroni 
correction (Dunnett, 1955). The results indicate that, although no sig
nificant difference was observed for high-elevation stations (Fig. 6c), 
significant differences (P < 0.05) are found for common stations 
(Fig. 6b). Thus, JRA-55 is considered the best among all the eight 
downscaled datasets, and it probably assimilates more observations 
from the common stations. It should be noted that the accuracy of the 
eight datasets significantly decrease when only using high-elevation 
stations for validation. 

Another interesting finding is that the higher spatial resolution does 
not necessarily mean higher evaluation accuracy, because the best three 
datasets (i.e. JRA-55, ERA-Interim and MERRA-2) are all with medium 
resolutions ranging from 0.5◦ to 1.25◦. This is true no matter for vali
dation based on the common stations or the high-elevation stations. 
Although no study has compared the accuracy of air temperature from 
the eight datasets simultaneously on the TP, our results are partly 
consistent with other studies evaluating several of the datasets. For 
example, ERA-Interim is found to have higher accuracy in air 

Fig. 6. Comparison of the accuracy of eight reanalysis and assimilation datasets downscaled using MODIS-estimated TLR (a), and the comparison between the best 
three datasets based on all stations (b), 100 common stations (c) and 13 high-elevation stations (d). The box and whiskers in (b), (c), and (d) are the distributions of 
station-based RMSD. In panels (b), (c) and (d), the letters at the top indicate the significance of the differences: the datasets with a same letter at the top indicate 
insignificant difference, otherwise indicate significant differences. 
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temperature than CFSR (Bao and Zhang, 2013), which is better than 
GLDAS (the second worst) and NNRP-1 (the worst) based on 63 CMA 
stations across the TP (Wang and Zeng, 2012). Chen et al. (2019) report 
that for daily air temperature in western China (including TP), MERRA-2 
is the best, and that both JRA-55 and ERA-Interim are the second best, 
followed by CFSR and NNRP-2. Since independent high-elevation ob
servations are used in this study, our comparison results are expected to 
be more reliable than those only using common station observations. 

4.2.3. The reliability of using MODIS-estimated TLR compared with the 
station-based TLR 

In order to better evaluate the reliability of the estimated TLRs, the 
“station-based TLRs” are also calculated for comparison. For each 
reanalysis grid block containing more than two stations, the monthly 
station-based TLRs are calculated based on all the stations located 
within the corresponding grid block. It should be noted that the TLR may 
vary among different grid resolutions (Supplementary Fig. S2), and that 
the station-based TLRs can be sensible to the stations used (Zhang et al., 
2018a). Thus, the MODIS-estimated TLRs cannot be directly compared 
with the station-based TLRs due to the inconsistency between different 
scales and the insufficiency of stations. We then compare the MODIS- 
estimated and station-based TLRs based on their performances in 
downscaling accuracy (Fig. 7). It should be also noted that only two 
situations of different station numbers are considered here due to the 
limited number of stations, and that the grid blocks with ≥2 stations 
include those with ≥3 stations. In addition, for the grid blocks with ≥3 
stations, only 3 types of reanalysis datasets that have sufficient grid 
blocks (≥3) meeting this criteria are considered. For a fair comparison, 
the ORG + TLR scheme is used here and only common stations are used. 
It is obvious that the MODIS-estimated TLRs are significantly better than 
the station-based TLR for all the types of reanalysis and assimilation 
datasets especially for grid blocks with ≥2 stations (Fig. 7a). Although 
the downscaling accuracy seems to be improved for cases with more 
than 3 stations (Fig. 7b), the accuracy of the MODIS-estimated TLRs is 
still obviously better than those using station-based TLR. This is attrib
uted to two reasons: (1) MODIS LST can provide much more temperature 
information than the sparsely distributed stations within a grid block, 
and thus results in a more representative TLR; (2) a reliable TLR needs 
sufficient number of stations/observations, but for the station-based 
TLR, some grid blocks with very limited number of stations (such as 2 
or 3) often lead to abnormal estimates of TLR, which further produces 
much lower accuracy. The second reason further suggests the impor
tance of developing the MODIS-estimated TLRs. 

4.2.4. Uncertainties about using the MODIS-estimated TLR and some 
limitations 

Although the lapse rate of LST is used for downscaling air tempera
ture in this study, it should be noted that LST is not equivalent to air 
temperature. Because of the intense interaction between land surface 
and atmosphere, it has been widely observed that air temperature holds 
a strong correlation with LST (including MODIS LST) (Benali et al., 
2012; Fu et al., 2011; Vancutsem et al., 2010). Furthermore, previous 
studies indicate that the spatial pattern of air temperature is similar to 
that of MODIS nighttime LST (Mutiibwa et al., 2015; Oyler et al., 2016). 
Wang et al. (2016a) also demonstrate that, in comparison with the 
monthly TLRs derived from sparse stations, those estimated from MODIS 
nighttime LST significantly improve simulation accuracy of snow pro
cesses in the upper Yellow River basin. Based on these findings, our 
previous work further analyzes the feasibility of using MODIS LST to 
estimate monthly TLR of the TP. We find that the MODIS-estimate TLR 
can well capture the spatial and temporal variation of station-observed 
TLR, in that the correlation coefficient between monthly TLRs estimated 
from TERRA nighttime LST and those from station air temperature ob
servations is 0.88 and that the spatial pattern of them are similar (Zhang 
et al., 2018a). However, we acknowledge that the fundamental differ
ences between LST and air temperature may pose uncertainties in the 
proposed TLR estimation method in certain conditions. He and Wang 
(2020) indicate that LST and air temperature have different sensitivity 
to surface energy balance that may lead to different lapse rates between 
them, although they also find that the multiyear average monthly var
iations of TLRs from LST are very similar to those from air temperature. 
The differences between their TLRs could be large in areas with complex 
land covers. Considering that the TP is a large region, it is more realistic 
to develop the gridded TLRs as in this study rather than a spatially 
constant one in the entire region or sub-regions (Li et al., 2013; Wang 
et al., 2016a). The effects of land cover types may gradually diminish 
with the grid size decreasing from 2.5◦ (NNRP2) to 0.25◦ (ERA5), 
although the sub-grid variability of land covers needs to be addressed in 
future studies. 

Most of the MODIS-estimated TLRs were estimated within the orig
inal reanalysis grid, which are considered locally reliable and thus 
referred to as “local TLR” here. However, the high cloud cover of the TP 
may impact the proposed TLR estimation method, making some rean
alysis grid fail to produce the “local TLR” due to missing data. As dis
cussed in section 3.1, when the conditions of SDE and R cannot be met or 
LSTs are not available within the original grid block, more neighboring 
grid blocks are added for calculating TLR. The calculated TLR are here 
referred to as “extrapolated TLR”. In total, the “extrapolated TLRs” 

Fig. 7. Comparison of downscaling accuracy between from using MODIS-estimated TLR and from using the station-based TLR for two situations including when grids 
with more than 2 stations are considered (a) and when girds with more than 3 stations are used (b). 
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caused by high cloud cover or small elevation variation account for 
about 10% of the developed TLRs for the eight datasets. To evaluate the 
uncertainty from the extrapolated TLRs, the downscaling accuracy of 
using the extrapolated TLRs and the local TLRs are compared based on 
only the stations where both the local and extrapolated TLRs were used 
for downscaling. The results (Supplementary Fig. S5a) show that the 
accuracy of using the extrapolated TLRs is indeed lower than that of 
using the local TLRs for most of the eight datasets expect for NNRP-2 and 
20CRV2c of which both the grid resolution and the downscaling errors 
are already very large. In general, the average increase in RMSD across 
the 8 datasets is ~ 0.2 ◦C. Though the maximum increase in RMSD can 
be as large as 0.7 ◦C (for CFSR) (Supplementary Fig. S5a), it is still 
considered highly acceptable in comparison with the poor performance 
of the station-based TLRs. To provide useful information on such un
certainty, a by-product is created to together with the developed 
monthly TLR product with the same temporal and spatial resolution. 
This by-product contained a “quality control code” that records detailed 
information on whether a “local TLR” is successfully produced for every 
grid block in each month. 

Another uncertainty may be that this study estimates the multi-year 
average monthly TLRs rather than the year-to-year monthly TLRs which 
are commonly used in previous studies. The use of the multi-year 
average monthly TLR is mainly due to the fact that MODIS LSTs are 
only available after 2001 while the estimated TLRs need to be used for 
downscaling long-term data (from 1980). One advantage of using 
multiyear average monthly TLR is the fewer missing data compared with 
the year-to-year monthly TLRs due to the high cloud cover of MODIS 
LST. Although the monthly TLRs in TP are reported to show significantly 
varying trends during 1962–2011 (Li et al., 2013), the averaged (from 
all common stations) maximum absolute differences between the year- 
to-year monthly TLRs and multi-year average monthly TLRs are less 
than 0.0008 ◦C/m for the four best downscaled datasets indicating 
limited effects (Supplementary Fig. S5b). We further compared their 
performances on downscaling the four datasets and found very small 
accuracy differences with the mean differences in RMSDs across all 
common stations being less than 0.1 ◦C. The accuracy of using the 
multiyear average monthly TLR is even slightly better than that of using 
year-to-year average one (Supplementary Fig. S5c). 

It should be noted that, although previous studies considered latitude 
or longitude in Eq. (1) for calculating TLR (Li et al., 2013; Rolland, 
2003), we did not consider them based on our experience that it may 
cause the problem of multicollinearity and thus unstable estimates of 
TLR (Zhang et al., 2018a; Zhang et al., 2018b). In addition, TLR may be 
affected by other surface characteristics (Firozjaei et al., 2020) such as 
vegetation, slope aspects and leeward/windward, which will be 
considered in a future study. 

4.3. Estimated air temperature by integrating multiple downscaled 
datasets 

4.3.1. Comparison of machine learning methods 
The comparison results of accuracy from all the machine learning 

models indicate that GB performs the best followed by RF and CR 
(Fig. 8). This is consistent among the three different situations including 
all stations, common stations and high-elevation stations. For the com
parison of accuracy in all stations, the mean RMSD of GB is 1.71 ◦C, 
which is only slightly smaller than that of RF (1.74 ◦C) and CR (1.88 ◦C). 
However, for high-elevation stations, GB is obviously superior to RF and 
CR with the mean RMSDs of 1.88 ◦C versus 2.10 ◦C and 2.32 ◦C. Thus, 
GB is selected as the final model for integrating the eight downscaled 
reanalysis and assimilation datasets of air temperature. 

4.3.2. Evaluating the integrated air temperature of 8 downscaled reanalysis 
datasets using GB 

Comparison between the further integrated air temperatures using 
GB model and those directly from the downscaled JRA-55 shows that the 

GB-integrated are better in both common stations and high-elevation 
stations (Fig. 9a). The validation RMSD (MAD) of the GB-integrated is 
1.7 (1.3) ± 0.3 (0.3) ◦C in common stations (Number = 100) and 1.9 
(1.5) ± 0.5 (0.4) ◦C in high-elevation stations (N = 13). Though the 
reduction in RMSD is only 0.17 ◦C for common stations, the GB- 
integrated air temperatures show obviously higher accuracy than the 
downscaled JRA-55 for high-elevation stations with the reduction in 
RMSD as large as 0.81 ◦C making its RMSD for high-elevation stations 
even less than 2.0 ◦C. This conclusion is also supported by the scatter 
plots of the GB-integrated and the downscaled JRA-55 (Supplementary 
Fig. S6) showing that the GB-integrated significantly improve the esti
mation accuracy in high-elevation stations compared with the down
scaled JRA-55. The spatial distributions of RMSDs are also plotted in 
Supplementary Fig. S7 showing that for most stations the GB-integrated 
are truly better than the downscaled JRA-55, especially for high- 
elevation stations (Fig. 9b). We further evaluated the accuracy on 
different land cover types and elevation ranges. The GB-integrated air 
temperature shows better accuracy than the downscaled JRA-55 in the 
two elevation situations including both above and below 3555 m (the 
median of all elevations of stations), and its superiority is much more 
evident for stations higher than 3555 m (Fig. 9c). It should also be noted 
that the accuracy difference between the two different elevation ranges 
is small (~0.1 ◦C) for the GB-integrated. The correlation analysis be
tween accuracy and elevations also shows that there is no significant 
correlation for the GB-integrated data whereas the accuracy of the 
downscaled JRA-55 truly shows significant (P < 0.05) positive correla
tion with elevation. All analyses indicate that the GB-integrated air 
temperature may be more reliable than the downscaled JRA-55 in high- 
elevation areas. Similar comparison results are also found on different 
land cover types. Due to the limited number of stations, the original land 
cover types of the 113 stations obtained from MODIS land cover product 
are reclassified into three categories including “urban and barren”, 
“vegetated” and “glacier”. The GB-integrated air temperature performs 
consistently better than the downscaled JRA-55 on all the three land 
cover types (Fig. 9d), particularly for glacier surfaces with a sharp 
decrease in RMSD of ~ 0.8 ◦C. 

Fig. 10 compares the temporal trends calculated from the new 
product and those gathered directly from the eight reanalysis and 

Fig. 8. Comparison of mean RMSD (a) and MAD (b) between GB, RF and CR 
models. The RMSD and MAD are averaged from all stations. 
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assimilation datasets. The trends produced by the GB-integrated are 
more similar with JRA-55 and ERA-Interim both of which have higher 
validation accuracy than the other six datasets. This is consistent with an 
evaluation study of the suitability of 12 types of reanalysis datasets for 
investigating regional warming trends in China, which also find that 
ERA-Interim and JRA-55 show the best performance in simulating air 
temperature climatology (Zhou et al., 2018). However, the downscaling 
using TLR enables the GB-integrated to obtain more detailed air tem
perature trends at higher spatial resolution and the accuracy improve
ment in air temperature data through machine learning is expected to 
produce more accurate temperature trends at higher resolutions. It 
should be noted that though the new product generally has relatively 
good accuracy in daily air temperature estimation, it may not meet the 
strict accuracy requirements for practical warming trend analysis. 
Continued efforts should be made in future to collect more observations 
to further evaluate the suitability of our new product for investigating 
the warming trends over the TP. 

4.3.3. The importance of the use of TLR and high-elevation observations 
Both the use of TLR and high-elevation observations may have 

important effects on the air temperature estimation in the present study. 
In order to distinguish their effects, another three GB models are re- 
trained. The first is trained using only observations from commons sta
tions and with the same predictor variables as the original GB model, 
called “GB_No_HS”. The second one is trained using observations from 

both common and high-elevation stations but replacing the downscaled 
air temperature of eight datasets with their original grid values from the 
predictors of GB model, called “GB_No_TLR”. The last GB model is 
trained both using only common station observations and taking orig
inal reanalysis data as predictors, called “GB_No_Both”. The same leave- 
one-out cross-validation results are shown in Fig. 11. The strong influ
ence of TLR can be seen from the obvious accuracy decline from GB to 
GB_No_TLR with the relatively large increase in RMSD of 0.6 ◦C and 
1.1 ◦C for both common and high-elevation stations, respectively. It is 
interesting that though elevation has been considered in GB_No_TLR 
model as a predictor variable, its accuracy is still much lower than the 
original GB model and even lower than the downscaled JRA-55 indi
cating that the use of TLR is much more efficient than simply incorpo
rating elevation into a statistical model. The important influence of 
high-elevation observations mainly lies in high-elevation areas that 
can be seen from the clearly lower accuracy of GB_No_HS than the 
original GB model in high-elevation stations. It is very interesting that 
for high-elevation stations, the accuracy reduction of GB_No_Both seems 
to be greatly exaggerated compared with both GB_No_TLR and 
GB_No_HS considering that for common stations they are much closer. It 
implies the great importance of both high-elevation observations and 
TLR. When reanalysis air temperature data need to be used in high- 
elevation areas, either reliable TLR or independent high-elevation ob
servations for correction can produce a much better accuracy, however, 
without using either of them, the estimated air temperature would be 

Fig. 9. Comparison of the GB-integrated and downscaled JRA-55 air temperature grouped by stations (a and b), elevations (c) and land cover types (d). CS: common 
stations; HS: high-elevation stations. N: number of stations. 
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very unreliable. This finding is important because accurate air temper
ature is urgently needed in high-elevation areas where many environ
mental processes such as snow or glacier melting are very sensitive to air 
temperature variation (Immerzeel et al., 2014; Zhang et al., 2015). The 
results also show that simply integrating multiple reanalysis air tem
peratures cannot significantly improve the accuracy especially consid
ering the very similar accuracy between GB_No_HS and the downscaled 
JRA-55 though the former is truly slightly better. 

4.3.4. Factors affecting the air temperature estimation accuracy and some 
limitations 

The first important factor of the estimation accuracy may be the 
reliability of the downscaled reanalysis datasets. Among the eight 
datasets, the downscaled JRA-55 is possibly the most important as it 
shows the best downscaling accuracy. The relative importance of vari
ables automatically calculated by the GB model based on the improve
ment in squared error due to different variables (Kuhn and Johnson, 
2013) also indicates that JRA-55 is the most important input data for our 
machine learning model (see Supplementary Fig. S8). The importance 
ranking is also highly consistent with the comparison results in Section 
4.2.2 in that the best three datasets and their relative orders are the 
same. The important effects of JRA-55 can also be seen from its highly 
consistent spatial patters of errors compared with that of the GB- 
integrated (Supplementary Fig. S7a and b). The correlation analysis 
shows that the RMSDs of the GB-integrated and the downscaled JRA-55 
hold a significant (P < 0.01) positive correlation of 0.65. 

Some special land covers, such as glaciers, may also be an important 
uncertainty source. Though the accuracy of the GB-integrated is largely 
improved on glacier surfaces compared with the downscaled JRA-55 
(Fig. 9d), its RMSD (2.0 ◦C) is obviously higher than that on the vege
tated (1.7 ◦C) and urban and barren surfaces (1.7 ◦C). The land cover 
effects could be exaggerated together with the scale problem about the 
difference between 1-km pixel and point position, especially for glacier 
surfaces (Qie et al., 2020; Wu et al., 2015; Zhang et al., 2018b). Though 
no significant correlation between elevation and RMSD is observed, the 
effects of elevation remain uncertain because the highest altitude of our 
stations is only 5900 m and the number of higher-than-5000 m stations 
is only 3. Such uneven distribution of stations might also make the 
predictions from GB model less reliable in areas with no stations, though 
the GB model shows better performance than CR and RF models. Future 
study may collect more field stations covering more land cover types and 
higher elevations for training a more reliable GB model. 

It should also be noted that a fair comparison between multiple 
machine learning models requires carefully designed experiments that 

Fig. 10. Comparison of the temperature trends between the GB-integrated (a), NNRP-2 (b), 20CRV2c (c), JRA-55 (d), ERA-Interim (e), MERRA-2 (f), CFSR (g), 
GLDAS (h) and ERA5 (i). Shadowed area means insignificant trends. 

Fig. 11. Comparison of accuracy among GB, GB_No_HS, GB_No_TLR, GB_No_
Both and the downscaled JRA-55 based on RMSD (a) and MAD (b). 
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could be affected by different configurations of hyperparameters and 
validation strategies. Though all the three models tested in this study 
have been tuned following common practice as described in Section 
3.3.1 and are compared based on the same station-based leave-one-out 
cross-validations, more efforts could be made in future to increase the 
reliability of the comparison results. For instance, due to the huge 
computational burden, only 10-fold and 5-fold cross-validations are 
currently used in parameter tuning for CR and RF models, respectively, 
while the GB model uses 100-fold cross-validations. 

Selection of ancillary variables also has effects on the estimation 
accuracy. Elevation, longitude, latitude and Julian day are the four most 
commonly used ancillary variables in air temperature estimation based 
on statistical models (Benali et al., 2012; Cristobal et al., 2008; Xu et al., 
2014). Thus, these four variables are firstly included as ancillary pre
dictors of our machine learning models. Considering that snow or glacier 
surface may have special effects on the air temperature estimation 
(Zhang et al., 2018b), the multiyear average snow cover days are also 
used as an ancillary variable. It is difficult to test every possible ancillary 
variable for a machine learning model due to the heavy computing 
burden. Including more ancillary variables such as albedo (Xu et al., 
2014), radiation (Emamifar et al., 2013) and soil moisture (Kim and 
Han, 2013) may have the potential to further improve the estimation 
accuracy. Future studies may also consider using the new MOD21 land 
surface temperature data for developing TLR to replace the MOD11 
product used in present study, since MOD21 is claimed to have 
addressed the problem of frequent cold bias in MOD11 product (Hulley 
et al., 2016). The high cloud cover of MODIS LST data may also affect the 
air temperature estimation accuracy by producing less reliable TLRs as 
discussed in Section 4.2.4. 

4.4. Comparison with other air temperature estimation studies on the TP 

Previous studies mainly estimate high resolution air temperature of 
the TP by downscaling reanalysis data or by incorporating MODIS LST. 
As for downscaling air temperature, most studies use TLR or a similarly 
simple empirical method (e.g., the linear regression) (Gao et al., 2017; 
Gerlitz et al., 2014; Huld and Pascua, 2015; Kazmi et al., 2015; Wang 
et al., 2011a; Wang et al., 2016b). For instance, Gerlitz et al. (2014) 
made corrections on both 1-km grid elevation and monthly bias to 
downscale daily air temperatures from ERA-Interim during 1989–2010 
and finally get a high accuracy with a general average RMSD of 2.1 ◦C in 
the TP, though the monthly bias correction is highly dependent on local 
observations. Some studies also employ more advanced downscaling 
methods such as the machine learning models. For example, Pérez et al. 
(2015) develop a high-resolution air temperature dataset of east Iberian 
Peninsula based on NCEP/NCAR reanalysis data downscaled using a 
hybrid artificial neural network. Cao et al. (2017) use the temperature 
difference between near surface and pressure-level from ERA-Interim as 
a predictor and a surface correction parameter to improve upon down
scaling results. This resulted in very high accuracy in Qilian mountains 
at a fine scale, but the model parameters need careful local calibration 
and are hard to transfer to other regions. This study selects TLR method 
as the downscaling scheme mainly due to two reasons: (1) TLR is easy to 
apply in mountainous regions and does not need dense stations, whereas 
more advanced models generally need clearly more ground observations 
for calibration; (2) TLR is also an important parameter in hydrological or 
ecological models in alpine areas, so the MODIS-estimated TLRs that are 
developed only using remote sensing temperatures can contribute to 
TLR parameterization in areas with no stations. 

A number of existing studies have been using various advanced 
statistical methods by taking MODIS LSTs as the most important pre
dictors to estimate 1-km air temperatures over the TP obtaining higher 
and higher accuracy with the RMSD reduced from 0.5 to 1.2 ◦C (Huang 
et al., 2017), ~1.0 ◦C (Xu et al., 2018) to ~0.7 ◦C (Zhu et al., 2019). 
However, they all have limitations for application because of their 
mostly estimating monthly temperatures and inability to produce long- 

term historical air temperature due to the short time span of MODIS LST. 
By contrast, the proposed method is not restricted to the time span of 
MODIS LST and is intrinsically free of clouds due to the sole dependence 
of space–time continuous reanalysis data rather than remote sensing 
products. It is also inspiring that compared with the limited researches 
targeting at estimating daily mean air temperature from MODIS LST, the 
accuracy from this study is relatively high in the TP with the mean 
RMSD of 1.7 ◦C versus 2.4–3.0 ◦C (Zhu et al., 2013), 2–4 ◦C (Kilibarda 
et al., 2014), ~2.0 ◦C (Zhang et al., 2016a) and 1.6–2.8 ◦C (Rao et al., 
2019). 

5. Conclusions 

This study creates a novel 1-km daily average air temperature data 
product of 1980–2014 by integrating observation data of 113 stations 
and eight reanalysis datasets using machine learning. We demonstrate 
that integrating both the MODIS-estimated TLR and high-elevation ob
servations can contribute greatly to the optimal use of multiple rean
alysis and assimilation data for estimating high-resolution daily air 
temperatures of the Tibetan Plateau. Three main findings are concluded. 

First, dynamically checking elevation variation of neighboring LST 
pixels can efficiently detect exceptional TLRs existing in the MODIS- 
estimated TLRs. A new TLR estimation method is thus proposed for 
estimating spatially continuous monthly TLRs from MODIS LST. The 
MODIS-estimated TLR shows reasonable spatial and seasonal patterns 
and is more reliable than the station-based one on the Tibetan Plateau. 
Second, all the eight reanalysis and assimilation air temperature data 
benefit a lot from being spatially downscaled with the MODIS-estimated 
TLR. The downscaled air temperature of JRA-55 shows the best accuracy 
among the eight downscaled datasets followed by ERA-Interim, MERRA- 
2, CFSR and others. Third, the GB model shows better performance than 
Random Forests and Cubist Regression in integrating multiple down
scaled reanalysis and assimilation data for daily average air temperature 
estimation. The new air temperature data estimated by GB model are 
better than the downscaled JRA-55 with the mean RMSDs of 1.7 ◦C 
versus 2.0 ◦C in general and especially the distinct mean RMSDs of 1.9 ◦C 
versus 2.7 ◦C in high-elevation stations. Both independent high-altitude 
training data and reliable TLRs are crucial for machine-learning based 
integration of multiple reanalysis and assimilation air temperatures in 
the Tibetan Plateau, especially for high-altitude areas, however, simply 
integrating multiple reanalysis data cannot produce significant 
improvement in estimation accuracy. 

Although the new 1-km daily average temperature product has a 
relatively high accuracy and a long time span, its uncertainties and 
limitations need further investigation in future. The MODIS-estimated 
TLR could be improved by considering more terrain and vegetation 
factors. Especially, the extrapolated TLRs due to insufficient LST sam
ples may have lower reliability and could be significantly improved by 
introducing more temperature information from other data sources such 
as MODIS AQUA LST. Despite 13 high-elevation stations’ observations 
used for model training, obviously more high-elevation observations 
should be collected in future to help improve the estimation accuracy 
through machine learning. It should be noted that the framework pro
posed for creating high-resolution air temperature data by integrating 
multiple reanalysis data with elevation correction is globally applicable 
and is not restricted to the Tibetan Plateau. 
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